References of "Microbiome"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data
de Nies, Laura UL; Lopes, Sara; Busi, Susheel Bhanu UL et al

in Microbiome (2021)

Background Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial ... [more ▼]

Background Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial resistance genes allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome compositions, functioning, and disease, it is essential to identify virulence factors and antimicrobial resistance genes in situ. At present, there is a clear lack of computational approaches to simultaneously identify these factors in metagenomic datasets. Results Here, we present PathoFact, a tool for the contextualized prediction of virulence factors, bacterial toxins, and antimicrobial resistance genes with high accuracy (0.921, 0.832 and 0.979, respectively) and specificity (0.957, 0.989 and 0.994). We evaluate the performance of PathoFact on simulated metagenomic datasets and perform a comparison to two other general workflows for the analysis of metagenomic data. PathoFact outperforms all existing workflows in predicting virulence factors and toxin genes. It performs comparably to one pipeline regarding the prediction of antimicrobial resistance while outperforming the others. We further demonstrate the performance of PathoFact on three publicly available case-control metagenomic datasets representing an actual infection as well as chronic diseases in which either pathogenic potential or bacterial toxins are hypothesized to play a role. In each case, we identify virulence factors and AMR genes which differentiated between the case and control groups, thereby revealing novel gene associations with the studied diseases. Conclusion PathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence factors, bacterial toxins, and antimicrobial resistance genes in metagenomic data. Additionally, our tool combines the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, PathoFact’s modules for virulence factors, toxins, and antimicrobial resistance genes can be applied independently, thereby making it a flexible and versatile tool. PathoFact, its models, and databases are freely available at https://pathofact.lcsb.uni.lu. [less ▲]

Detailed reference viewed: 78 (2 UL)
Full Text
Peer Reviewed
See detailCompositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- and soil-feeding higher termites.
Marynowska, Martyna; Goux, Xavier; Sillam-Dusses, David et al

in Microbiome (2020)

Detailed reference viewed: 135 (0 UL)
Full Text
Peer Reviewed
See detailSystematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease
Heinken, Almut Katrin UL; Ravcheev, Dmitry UL; Baldini, Federico UL et al

in Microbiome (2019)

Background The human gut microbiome performs important functions in human health and disease. A classic example for host-gut microbial co-metabolism is host biosynthesis of primary bile acids and their ... [more ▼]

Background The human gut microbiome performs important functions in human health and disease. A classic example for host-gut microbial co-metabolism is host biosynthesis of primary bile acids and their subsequent deconjugation and transformation by the gut microbiome. To understand these system-level host-microbe interactions, a mechanistic, multi-scale computational systems biology approach that integrates the different types of omic data is needed. Here, we use a systematic workflow to computationally model bile acid metabolism in gut microbes and microbial communities. Results Therefore, we first performed a comparative genomic analysis of bile acid deconjugation and biotransformation pathways in 693 human gut microbial genomes and expanded 232 curated genome-scale microbial metabolic reconstructions with the corresponding reactions (available at https://vmh.life). We then predicted the bile acid biotransformation potential of each microbe and in combination with other microbes. We found that each microbe could produce maximally six of the 13 secondary bile acids in silico, while microbial pairs could produce up to 12 bile acids, suggesting bile acid biotransformation being a microbial community task. To investigate the metabolic potential of a given microbiome, publicly available metagenomics data from healthy Western individuals, as well as inflammatory bowel disease patients and healthy controls, were mapped onto the genomes of the reconstructed strains. We constructed for each individual a large-scale personalized microbial community model that takes into account strain-level abundances. Using flux balance analysis, we found considerable variation in the potential to deconjugate and transform primary bile acids between the gut microbiomes of healthy individuals. Moreover, the microbiomes of pediatric inflammatory bowel disease patients were significantly depleted in their bile acid production potential compared with that of controls. The contributions of each strain to overall bile acid production potential across individuals were found to be distinct between inflammatory bowel disease patients and controls. Finally, bottlenecks limiting secondary bile acid production potential were identified in each microbiome model. Conclusions This large-scale modeling approach provides a novel way of analyzing metagenomics data to accelerate our understanding of the metabolic interactions between the host and gut microbiomes in health and diseases states. Our models and tools are freely available to the scientific community. [less ▲]

Detailed reference viewed: 114 (5 UL)
Full Text
Peer Reviewed
See detailVizBin - an application for reference-independent visualization and human-augmented binning of metagenomic data
Laczny, Cedric Christian UL; Sternal, Tomasz; Plugaru, Valentin UL et al

in Microbiome (2015)

Background Metagenomics is limited in its ability to link distinct microbial populations to genetic potential due to a current lack of representative isolate genome sequences. Reference-independent ... [more ▼]

Background Metagenomics is limited in its ability to link distinct microbial populations to genetic potential due to a current lack of representative isolate genome sequences. Reference-independent approaches, which exploit for example inherent genomic signatures for the clustering of metagenomic fragments (binning), offer the prospect to resolve and reconstruct population-level genomic complements without the need for prior knowledge. Results We present VizBin, a Java™-based application which offers efficient and intuitive reference-independent visualization of metagenomic datasets from single samples for subsequent human-in-the-loop inspection and binning. The method is based on nonlinear dimension reduction of genomic signatures and exploits the superior pattern recognition capabilities of the human eye-brain system for cluster identification and delineation. We demonstrate the general applicability of VizBin for the analysis of metagenomic sequence data by presenting results from two cellulolytic microbial communities and one human-borne microbial consortium. The superior performance of our application compared to other analogous metagenomic visualization and binning methods is also presented. Conclusions VizBin can be applied de novo for the visualization and subsequent binning of metagenomic datasets from single samples, and it can be used for the post hoc inspection and refinement of automatically generated bins. Due to its computational efficiency, it can be run on common desktop machines and enables the analysis of complex metagenomic datasets in a matter of minutes. The software implementation is available at https://claczny.github.io/VizBin under the BSD License (four-clause) and runs under Microsoft Windows™, Apple Mac OS X™ (10.7 to 10.10), and Linux. [less ▲]

Detailed reference viewed: 384 (29 UL)
Full Text
Peer Reviewed
See detailPhenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires
Bauer, Eugen UL; Laczny, Cedric Christian UL; Magnusdottir, Stefania UL et al

in Microbiome (2015), 3(55), 1-13

Background: The human gastrointestinal tract harbors a diverse microbial community, in which metabolic phenotypes play important roles for the human host. Recent developments in meta-omics attempt to ... [more ▼]

Background: The human gastrointestinal tract harbors a diverse microbial community, in which metabolic phenotypes play important roles for the human host. Recent developments in meta-omics attempt to unravel metabolic roles of microbes by linking genotypic and phenotypic characteristics. This connection, however, still remains poorly understood with respect to its evolutionary and ecological context. Results: We generated automatically refined draft genome-scale metabolic models of 301 representative intestinal microbes in silico. We applied a combination of unsupervised machine-learning and systems biology techniques to study individual and global differences in genomic content and inferred metabolic capabilities. Based on the global metabolic differences, we found that energy metabolism and membrane synthesis play important roles in delineating different taxonomic groups. Furthermore, we found an exponential relationship between phylogeny and the reaction composition, meaning that closely related microbes of the same genus can exhibit pronounced differences with respect to their metabolic capabilities while at the family level only marginal metabolic differences can be observed. This finding was further substantiated by the metabolic divergence within different genera. In particular, we could distinguish three sub-type clusters based on membrane and energy metabolism within the Lactobacilli as well as two clusters within the Bifidobacteria and Bacteroides. Conclusions: We demonstrate that phenotypic differentiation within closely related species could be explained by their metabolic repertoire rather than their phylogenetic relationships. These results have important implications in our understanding of the ecological and evolutionary complexity of the human gastrointestinal microbiome. [less ▲]

Detailed reference viewed: 266 (14 UL)
Full Text
Peer Reviewed
See detailFrom meta-omics to causality: experimental models for human microbiome research
Fritz, Joëlle UL; Desai, Mahesh UL; Shah, Pranjul UL et al

in Microbiome (2013), 1(14),

Large-scale ‘meta-omic’ projects are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying ... [more ▼]

Large-scale ‘meta-omic’ projects are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome, cross-sectional, case–control and longitudinal studies may not have enough statistical power to allow causation to be deduced from patterns of association between variables in high-resolution omic datasets. Therefore, to move beyond reliance on the empirical method, experiments are critical. For these, robust experimental models are required that allow the systematic manipulation of variables to test the multitude of hypotheses, which arise from high-throughput molecular studies. Particularly promising in this respect are microfluidics-based in vitro co-culture systems, which allow high-throughput first-pass experiments aimed at proving cause-and-effect relationships prior to testing of hypotheses in animal models. This review focuses on widely used in vivo, in vitro, ex vivo and in silico approaches to study host-microbial community interactions. Such systems, either used in isolation or in a combinatory experimental approach, will allow systematic investigations of the impact of microbes on the health and disease of the human host. All the currently available models present pros and cons, which are described and discussed. Moreover, suggestions are made on how to develop future experimental models that not only allow the study of host-microbiota interactions but are also amenable to high-throughput experimentation. [less ▲]

Detailed reference viewed: 427 (22 UL)