![]() ; Szpakowska, Martyna ![]() in Methods in enzymology (2022), 675 After more than two years, COVID-19 still represents a global health burden of unprecedented extent and assessing the degree of immunity of individuals against SARS-CoV-2 remains a challenge. Virus ... [more ▼] After more than two years, COVID-19 still represents a global health burden of unprecedented extent and assessing the degree of immunity of individuals against SARS-CoV-2 remains a challenge. Virus neutralization assays represent the gold standard for assessing antibody-mediated protection against SARS-CoV-2 in sera from recovered and/or vaccinated individuals. Neutralizing antibodies block the interaction of viral spike protein with human angiotensin-converting enzyme 2 (ACE2) receptor in vitro and prevent viral entry into host cells. Classical viral neutralization assays using full replication-competent viruses are restricted to specific biosafety level 3-certified laboratories, limiting their utility for routine and large-scale applications. We developed therefore a cell-fusion-based assay building on the interaction between viral spike and ACE2 receptor expressed on two different cell lines, substantially reducing biosafety risks associated with classical viral neutralization assays. This chapter describes this simple, sensitive, safe and cost-effective approach for rapid and high-throughput evaluation of SARS-CoV-2 neutralizing antibodies relying on high-affinity NanoLuc® luciferase complementation technology (HiBiT). When applied to a variety of standards and patient samples, this method yields highly reproducible results in 96-well, as well as in 384-well format. The use of novel NanoLuc® substrates with increased signal stability like Nano-Glo® Endurazine™ furthermore allows for high flexibility in assay set-up and full automatization of all reading processes. Lastly, the assay is suitable to evaluate the neutralizing capacity of sera against the existing spike variants, and potentially variants that will emerge in the future. [less ▲] Detailed reference viewed: 39 (0 UL)![]() Weindl, Daniel ![]() ![]() ![]() in Methods in Enzymology (2015), 561 Stable isotopes have been used to trace atoms through metabolism and quantify metabolic fluxes for several decades. Only recently non-targeted stable isotope labeling approaches have emerged as a powerful ... [more ▼] Stable isotopes have been used to trace atoms through metabolism and quantify metabolic fluxes for several decades. Only recently non-targeted stable isotope labeling approaches have emerged as a powerful tool to gain biological insights into metabolism. However, the manual detection of isotopic enrichment for a non-targeted analysis is tedious and time consuming. To overcome this limitation, the non-targeted tracer fate detection (NTFD) algorithm for the automated metabolome-wide detection of isotopic enrichment has been developed. NTFD detects and quantifies isotopic enrichment in the form of mass isotopomer distributions (MIDs) in an automated manner, providing the means to trace functional groups, determine MIDs for metabolic flux analysis, or detect tracer-derived molecules in general. Here, we describe the algorithmic background of NTFD, discuss practical considerations for the freely available NTFD software package, and present potential applications of non-targeted stable isotope labeling analysis. [less ▲] Detailed reference viewed: 223 (18 UL)![]() Muller, Emilie ![]() ![]() ![]() in Methods in Enzymology (2014) Integrated omics of microbial consortia, comprising systematized metagenomic, metatranscriptomic, metaproteomic and meta-metabolomic analyses, allows in-depth characterization of organismal and functional ... [more ▼] Integrated omics of microbial consortia, comprising systematized metagenomic, metatranscriptomic, metaproteomic and meta-metabolomic analyses, allows in-depth characterization of organismal and functional diversity in situ. To allow meaningful meta-omic data integration, truly systematic measurements of the typically heterogeneous sample biomass is required. Therefore, there is a need for analyzing biomolecular fractions obtained from single, undivided samples. Here, we share a methodological workflow for the reproducible isolation of concomitant polar and non-polar metabolites, RNA, DNA and proteins from samples obtained from a biological wastewater treatment plant. The methodological framework is applicable to other biological samples [1,2], is compatible with different kits for biomacromolecular isolation [1,2] with minimal tailoring, and represents an important first step in standardization for the emerging field of Molecular Eco-Systems Biology. [less ▲] Detailed reference viewed: 384 (32 UL)![]() Roume, Hugo ![]() ![]() in Methods in Enzymology (2013), 531 In microbial ecology, high-resolution molecular approaches are essential for characterizing the vast organismal and functional diversity and understanding the interaction of microbial communities with ... [more ▼] In microbial ecology, high-resolution molecular approaches are essential for characterizing the vast organismal and functional diversity and understanding the interaction of microbial communities with biotic and abiotic environmental factors. Integrated omics, comprising genomics, transcriptomics, proteomics, and metabolomics allows conclusive links to be drawn between genetic potential and function. However, this requires truly systematic measurements. In this chapter, we first assess the levels of heterogeneity within mixed microbial communities, thereby demonstrating the need for analyzing biomolecular fractions obtained from a single and undivided sample to facilitate multi-omic analysis and meaningful data integration. Further, we describe a methodological workflow for the reproducible isolation of concomitant metabolites, RNA (optionally split into large and small RNA fractions), DNA, and proteins. Depending on the nature of the sample, the methodology comprises different (pre)processing and preservation steps. If possible, extracellular polar and nonpolar metabolites may first be extracted from cell supernatants using organic solvents. Cells are homogenized by cryomilling before small molecules are extracted with organic solvents. After cell lysis, nucleic acids and protein fractions are sequentially isolated using chromatographic spin columns. To prove the broad applicability of the methodology, we applied it to microbial consortia of biotechnological (biological wastewater treatment biomass), environmental (freshwater planktonic communities), and biomedical (human fecal sample) research interest. The methodological framework should be applicable to other microbial communities as well as other biological samples with a minimum of tailoring and represents an important first step in standardization for the emerging field of Molecular Eco-Systems Biology. [less ▲] Detailed reference viewed: 262 (17 UL)![]() ; ; et al in Methods in Enzymology (2011), 500 In this chapter, we describe the steps needed to create a kinetic model of a metabolic pathway based on kinetic data from experimental measurements and literature review. Our methodology is presented by ... [more ▼] In this chapter, we describe the steps needed to create a kinetic model of a metabolic pathway based on kinetic data from experimental measurements and literature review. Our methodology is presented by utilizing the example of trehalose metabolism in yeast. The biology of the trehalose cycle is briefly reviewed and discussed. [less ▲] Detailed reference viewed: 135 (10 UL)![]() Schwamborn, Jens Christian ![]() in Methods in Enzymology (2006), 406 Neurons are probably the most highly polarized cell type and typically develop a single axon and several dendrites. The establishment of a polarized morphology and the functional specialization of axonal ... [more ▼] Neurons are probably the most highly polarized cell type and typically develop a single axon and several dendrites. The establishment of a polarized morphology and the functional specialization of axonal and dendritic compartments are essential steps in the differentiation of neurons. Primary cultures of dissociated hippocampal neurons are a widely used system to study the development of neuronal differentiation. In this article, we will describe gain-of-function and loss-of-function approaches that allow us to analyze the role of GTPases in neuronal differentiation. [less ▲] Detailed reference viewed: 171 (3 UL) |
||