![]() ; ; et al in Medical Image Analysis (2022) Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of ... [more ▼] Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020. [less ▲] Detailed reference viewed: 27 (2 UL)![]() Garcia Santa Cruz, Beatriz ![]() ![]() ![]() in Medical Image Analysis (2021), 74 Computer-aided diagnosis and stratification of COVID-19 based on chest X-ray suffers from weak bias assessment and limited quality-control. Undetected bias induced by inappropriate use of datasets, and ... [more ▼] Computer-aided diagnosis and stratification of COVID-19 based on chest X-ray suffers from weak bias assessment and limited quality-control. Undetected bias induced by inappropriate use of datasets, and improper consideration of confounders prevents the translation of prediction models into clinical practice. By adopting established tools for model evaluation to the task of evaluating datasets, this study provides a systematic appraisal of publicly available COVID-19 chest X-ray datasets, determining their potential use and evaluating potential sources of bias. Only 9 out of more than a hundred identified datasets met at least the criteria for proper assessment of the risk of bias and could be analysed in detail. Remarkably most of the datasets utilised in 201 papers published in peer-reviewed journals, are not among these 9 datasets, thus leading to models with a high risk of bias. This raises concerns about the suitability of such models for clinical use. This systematic review highlights the limited description of datasets employed for modelling and aids researchers to select the most suitable datasets for their task. [less ▲] Detailed reference viewed: 200 (41 UL)![]() Bernard, Florian ![]() ![]() ![]() in Medical Image Analysis (2017), 38 The reconstruction of an object’s shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process ... [more ▼] The reconstruction of an object’s shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are “oriented” according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data. [less ▲] Detailed reference viewed: 194 (21 UL)![]() ; ; et al in Medical Image Analysis (2014), 18(2), 394-410 This paper presents a numerical method for interactive (real-time) simulations, which considerably improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact, cutting and ... [more ▼] This paper presents a numerical method for interactive (real-time) simulations, which considerably improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact, cutting and other topological changes. We provide an integrated methodology able to deal both with the ill-conditioning issues associated with material heterogeneities, contact boundary conditions which are one of the main sources of inaccuracies, and cutting which is one of the most challenging issues in interactive simulations. Our approach is based on an implicit time integration of a non-linear finite element model. To enable real-time computations, we propose a new preconditioning technique, based on an asynchronous update at low frequency. The preconditioner is not only used to improve the computation of the deformation of the tissues, but also to simulate the contact response of homogeneous and heterogeneous bodies with the same accuracy. We also address the problem of cutting the heterogeneous structures and propose a method to update the preconditioner according to the topological modifications. Finally, we apply our approach to three challenging demonstrators: (i) a simulation of cataract surgery (ii) a simulation of laparoscopic hepatectomy (iii) a brain tumor surgery. © 2013 Elsevier B.V. [less ▲] Detailed reference viewed: 921 (23 UL) |
||