References of "Mechanics of Materials"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation
Loew, Pascal Juergen UL; Peters, Bernhard UL; Beex, Lars UL

in Mechanics of Materials (2020), 142

By regularizing sharp cracks within a pure continuum setting, phase-damage models offer the ability to capture crack nucleation as well as crack propagation. Crack branching and coalescence can ... [more ▼]

By regularizing sharp cracks within a pure continuum setting, phase-damage models offer the ability to capture crack nucleation as well as crack propagation. Crack branching and coalescence can furthermore be described without any additional efforts, as geometrical descriptions of the cracks are not required. In this contribution, we extend our previous phase-field model for rate-dependent fracture of rubbers in a finite strain setting (Loew et al., 2019) to describe damage under cyclic loading. The model is derived from the balance of mechanical energy and introduces a fatigue damage source as a function of the accumulated viscous dissipation under cyclic loading. We use uniaxial cyclic tension to present the influence of the fatigue material parameters and to confirm the model’s energy balance. The parameters are subsequently identified using monotonic and cyclic experiments of a plane stress nature. Finally, the model is validated by separate experiments, which demonstrate that the model accurately predicts (fatigue) crack nucleation as well as propagation. [less ▲]

Detailed reference viewed: 80 (7 UL)
Full Text
Peer Reviewed
See detailThe mechanical reliability of an electronic textile investigated using the virtual-power-based quasicontinuum method
Beex, Lars UL; Peerlings, Ron; Van Os, Koen et al

in Mechanics of Materials (2015), 80

The quasicontinuum (QC) method is a multiscale method for the solution of lattice models that combines coarse-grained regions and fully resolved regions with individual lattice events. QC methodologies ... [more ▼]

The quasicontinuum (QC) method is a multiscale method for the solution of lattice models that combines coarse-grained regions and fully resolved regions with individual lattice events. QC methodologies are mainly used to reduce the computational costs of conservative atomistic lattice computations. Recently, a virtual-power-based variant has been proposed that enables its use for non-conservative lattice computations. In this contribution the virtual-power-based QC approach is adopted in combination with a recently proposed mesostructural lattice model for electronic textile in order to investigate its mechanical behaviour. The interactions of the lattice model for electronic textile are modelled elastoplastically and hence, regular conservative QC approaches are not adequate. This article incorporates a modification of a previously defined exact summation rule for QC methods –by sampling the lattice interactions directly instead of via the lattice nodes. This leads to a significant reduction of the computational cost, whereas the accuracy of the summation rule remains unaffected. The presented methodology is used to efficiently investigate the failure envelope of an electronic textile – a woven fabric with embedded electronic components and conductive wires. The dependence of the failure envelope on the locations of the conductive wires and the stiffness of the weft yarns is investigated as well. [less ▲]

Detailed reference viewed: 199 (8 UL)