![]() ; ; et al in Materials (2022), 15 This study aims to present various forms of cellulose, whose shape depends on the source of origin, and to demonstrate the differences in the influence on the properties of materials produced with its ... [more ▼] This study aims to present various forms of cellulose, whose shape depends on the source of origin, and to demonstrate the differences in the influence on the properties of materials produced with its participation. For this purpose, composites with various plant additives have been designed and obtained. Some of them have undergone chemical and pyrolytic modifications. The results of the mechanical, physicochemical and microscopic tests showed differences in cellulose structure, even in the case of very similar sources, and its diversified influence on the characteristics of the obtained materials. The research shows the effect of the use of natural additives and their modified versions on the mechanical properties of the composite based on epoxy resin. It turns out that cellulose modifiers are not only fillers that reduce the price of the final product but can also increase some mechanical properties, e.g., compressive strength, which is an additional advantage and a reason for wider use. The potential of natural resources is not yet fully understood. Relatively recently, people have started to be interested in cellulose on a nanometric scale, as it turns out that it can exist in several different forms with interesting properties. [less ▲] Detailed reference viewed: 25 (4 UL)![]() ; Kedziora, Slawomir ![]() ![]() in Materials (2022), 15(22), 8135 The present paper analyses the properties of printed polylactic acid (PLA) samples with admixtures of graphene nanopowder (GNP) at wt. 1%, 2% and 4%. The pure polylactide and admixed polylactide printed ... [more ▼] The present paper analyses the properties of printed polylactic acid (PLA) samples with admixtures of graphene nanopowder (GNP) at wt. 1%, 2% and 4%. The pure polylactide and admixed polylactide printed samples were examined to determine their chemical-physical properties, stiffness, and strength parameters. The tests of tensile, dynamic mechanical analysis (DMA), difference thermogravimetric (TG), and differential scanning calorimetry (DSC) were executed before and after UV (ultraviolet) treatment. The first part of the paper shows the process of manufacturing granulates and filaments mixed with graphene. The second part of the paper concerns the results of the tests made on printed samples. The analysed samples were printed using a Prusa i3 MK3 printer. It transpired that the content of graphene at 1% improved the mechanical parameters of the printed composite by organising its structure. Increasing the amount of graphene caused the values of the measured parameters to drop. This research indicates how important it is to determine the optimal values of nanoadditives in biopolymers. [less ▲] Detailed reference viewed: 20 (0 UL)![]() Kedziora, Slawomir ![]() ![]() ![]() in Materials (2022), 15(18), 6278 The number of additive manufacturing methods and materials is growing rapidly, leaving gaps in the knowledge of specific material properties. A relatively recent addition is the metal-filled filament to ... [more ▼] The number of additive manufacturing methods and materials is growing rapidly, leaving gaps in the knowledge of specific material properties. A relatively recent addition is the metal-filled filament to be printed similarly to the fused filament fabrication (FFF) technology used for plastic materials, but with additional debinding and sintering steps. While tensile, bending, and shear properties of metals manufactured this way have been studied thoroughly, their fatigue properties remain unexplored. Thus, the paper aims to determine the tensile, fatigue, and impact strengths of Markforged 17-4 PH and BASF Ultrafuse 316L stainless steel to answer whether the metal FFF can be used for structural parts safely with the current state of technology. They are compared to two 316L variants manufactured via selective laser melting (SLM) and literature results. For extrusion-based additive manufacturing methods, a significant decrease in tensile and fatigue strength is observed compared to specimens manufactured via SLM. Defects created during the extrusion and by the pathing scheme, causing a rough surface and internal voids to act as local stress risers, handle the strength decrease. The findings cast doubt on whether the metal FFF technique can be safely used for structural components; therefore, further developments are needed to reduce internal material defects. [less ▲] Detailed reference viewed: 28 (2 UL)![]() ; Kedziora, Slawomir ![]() in Materials (2019), 13(74), 1-12 This work deals with the investigation of a steel thin-walled C-column subjected to compression due to temperature increase. These experimental studies of the compressed columns in post-buckling state ... [more ▼] This work deals with the investigation of a steel thin-walled C-column subjected to compression due to temperature increase. These experimental studies of the compressed columns in post-buckling state were conducted to determine their load-carrying capacity. To ensure appropriate supports and keeping of columns, plates with grooves were constructed. The tests of the columns' compression for different preloads were carried out. By comparing the experiment results, numerical calculations based on the finite element method (FEM) and the semi-analytical method (SAM) of solution were performed. The computations were executed with the use of full material characteristics with consideration of large strains and deflections. Furthermore, while observing the deformation of columns, a non-contact Digital Correlation ARAMIS\textregistered system was employed whose calculated results of deformations are very close to the results of the numerical method. The paper revealed that maximum recorded loads under temperature rise are comparable regardless of a value of initial load. A good correlation in results between used methods was achieved. The main goal of the present work was to assess of behavior of thin-walled compressed steel columns in a temperature-controlled environment till their full damage [less ▲] Detailed reference viewed: 71 (4 UL)![]() ; ; Maccaferri, Nicolò ![]() in Materials (2019), 12(20), 3286 Here we optimized the electrophoretic deposition process for the fabrication of WS2 plasmonic nanohole integrated structures. We showed how the conditions used for site-selective deposition influenced the ... [more ▼] Here we optimized the electrophoretic deposition process for the fabrication of WS2 plasmonic nanohole integrated structures. We showed how the conditions used for site-selective deposition influenced the properties of the deposited flakes. In particular, we investigated the effect of different suspension buffers used during the deposition both in the efficiency of the process and in the stability of WS2 flakes, which were deposited on an ordered arrays of plasmonic nanostructures. We observed that a proper buffer can significantly facilitate the deposition process, keeping the material stable with respect to oxidation and contamination. Moreover, the integrated plasmonic structures that can be prepared with this process can be applied to enhanced spectroscopies and for the preparation of 2D nanopores. [less ▲] Detailed reference viewed: 101 (0 UL)![]() Sharma, Anshul ![]() ![]() in Materials (2018), 11(3), 393 We present a robust method to prepare thin oriented nematic liquid crystalline elastomer-polymer (LCE-polymer) core-sheath fibers. An electrospinning setup is utilized to spin a single solution of photo ... [more ▼] We present a robust method to prepare thin oriented nematic liquid crystalline elastomer-polymer (LCE-polymer) core-sheath fibers. An electrospinning setup is utilized to spin a single solution of photo-crosslinkable low molecular weight reactive mesogens and a support polymer to form the coaxial LCE-polymer fibers, where the support polymer forms the sheath via in situ phase separation as the solvent evaporates. We discuss the effect of phase separation and compare two different sheath polymers (polyvinylpyrrolidone and polylactic acid), investigating optical and morphological properties of obtained fibers, as well as the shape changes upon heating. The current fibers show only irreversible contraction, the relaxation most likely being hindered by the presence of the passive sheath polymer, increasing in stiffness on cooling. If the sheath polymer can be removed while keeping the LCE core intact, we expect LCE fibers produced in this way to have potential to be used as actuators, for instance in soft robotics and responsive textiles. [less ▲] Detailed reference viewed: 159 (5 UL)![]() ; Honaker, Lawrence William ![]() in Materials (2017), 11(20), In this review article, we analyze recent progress in the application of liquid crystal-assisted advanced functional materials for sensing biological and chemical analytes. Multiple research groups ... [more ▼] In this review article, we analyze recent progress in the application of liquid crystal-assisted advanced functional materials for sensing biological and chemical analytes. Multiple research groups demonstrate substantial interest in liquid crystal (LC) sensing platforms, generating an increasing number of scientific articles. We review trends in implementing LC sensing techniques and identify common problems related to the stability and reliability of the sensing materials as well as to experimental set-ups. Finally, we suggest possible means of bridging scientific findings to viable and attractive LC sensor platforms. [less ▲] Detailed reference viewed: 166 (11 UL)![]() ; Bordas, Stéphane ![]() ![]() in Materials (2016), 9(8), Fretting is a phenomenon that occurs at the contacts of surfaces that are subjected to oscillatory relative movement of small amplitudes. Depending on service conditions, fretting may significantly reduce ... [more ▼] Fretting is a phenomenon that occurs at the contacts of surfaces that are subjected to oscillatory relative movement of small amplitudes. Depending on service conditions, fretting may significantly reduce the service life of a component due to fretting fatigue. In this regard, the analysis of stresses at contact is of great importance for predicting the lifetime of components. However, due to the complexity of the fretting phenomenon, analytical solutions are available for very selective situations and finite element (FE) analysis has become an attractive tool to evaluate stresses and to study fretting problems. Recent laboratory studies in fretting fatigue suggested the presence of stress singularities in the stick-slip zone. In this paper, we constructed finite element models, with different element sizes, in order to verify the existence of stress singularity under fretting conditions. Based on our results, we did not find any singularity for the considered loading conditions and coefficients of friction. Since no singularity was found, the present paper also provides some comments regarding the convergence rate. Our analyses showed that the convergence rate in stress components depends on coefficient of friction, implying that this rate also depends on the loading condition. It was also observed that errors can be relatively high for cases with a high coefficient of friction, suggesting the importance of mesh refinement in these situations. Although the accuracy of the FE analysis is very important for satisfactory predictions, most of the studies in the literature rarely provide information regarding the level of error in simulations. Thus, some recommendations of mesh sizes for those who wish to perform FE analysis of fretting problems are provided for different levels of accuracy. [less ▲] Detailed reference viewed: 125 (2 UL)![]() ; Baroli, Davide ![]() in Materials (n.d.) Computational fluid-dynamics (CFD) is of wide relevance in engineering and science, due to its capability of simulating the three-dimensional flow at various scales. However, the suitability of a given ... [more ▼] Computational fluid-dynamics (CFD) is of wide relevance in engineering and science, due to its capability of simulating the three-dimensional flow at various scales. However, the suitability of a given model depends on the actual scenarios which are encountered in practice. This challenge of model suitability and calibration could be overcome by a dynamic integration of measured data into the simulation. This paradigm is known as data-driven assimilation (DDA). In this paper, the study is devoted to Kalman filtering, a Bayesian approach, applied to Reynolds-Averaged Navier-Stokes (RANS) equations for turbulent flow. The integration of the Kalman estimator into the PISO segregated scheme was recently investigated by (1). In this work, this approach is extended to the PIMPLE segregated method and to the ther- modynamic analysis of turbulent flow, with the addition of a sub-stepping procedure that ensures mass conservation at each time step and the com- patibility among the unknowns involved. The accuracy of the algorithm is verified with respect to the heated lid-driven cavity benchmark, incorporat- ing also temperature observations, comparing the augmented prediction of the Kalman filter with the CFD solution obtained on a very fine grid. [less ▲] Detailed reference viewed: 139 (7 UL) |
||