![]() Fedorov, Dmitry ![]() in Journal of Physics: Condensed Matter (2021), 34 Detailed reference viewed: 49 (5 UL)![]() Habibi, Alireza ![]() in Journal of Physics: Condensed Matter (2021), 33 As a low-energy effective theory on non-symmorphic lattices, we consider a generic triple point fermion Hamiltonian, which is parameterized by an angular parameter λ. We find strong λ dependence in both ... [more ▼] As a low-energy effective theory on non-symmorphic lattices, we consider a generic triple point fermion Hamiltonian, which is parameterized by an angular parameter λ. We find strong λ dependence in both Drude and interband optical absorption of these systems. The deviation of the T2 coefficient of the Drude weight from Dirac/Weyl fermions can be used as a quick way to optically distinguish the triple point degeneracies from the Dirac/Weyl degeneracies. At the particular λ = π/6 point, we find that the 'helicity' reversal optical transition matrix element is identically zero. Nevertheless, deviating from this point, the helicity reversal emerges as an absorption channel. [less ▲] Detailed reference viewed: 56 (4 UL)![]() ; ; et al in Journal of Physics: Condensed Matter (2020), 32(32), 324001 The isothermal crystallization times and critical cooling rates of the liquid phase are determined for the two bulk metallic glass forming alloys Au49Ag5.5Pd2.3Cu26.9Si16.3 and Au51.6Ag5.8Pd2.4Cu20.2Ga6 ... [more ▼] The isothermal crystallization times and critical cooling rates of the liquid phase are determined for the two bulk metallic glass forming alloys Au49Ag5.5Pd2.3Cu26.9Si16.3 and Au51.6Ag5.8Pd2.4Cu20.2Ga6.7Si13.3 by using fast differential scanning calorimetry, covering the whole timescale of the crystallization event of the metallic melt. In the case of Au49Ag5.5Pd2.3Cu26.9Si16.3, a typical crystallization nose was observed, whereas for the Au51.6Ag5.8Pd2.4Cu20.2Ga6.7Si13.3, a more complex crystallization behavior with two distinct crystallization noses was found. Even for the complex crystallization behavior of the Au51.6Ag5.8Pd2.4Cu20.2Ga6.7Si13.3 alloy it is shown that the minimal isothermal nose time does allow for a quantification of the macroscopic critical thickness. It is discussed in contrast to the critical cooling rate, which is found to allow less exact calculations of the critical thickness and thus does not correlate well with the critical cooling rate from macroscopic experiments. Additionally the crystallization data of Au49Ag5.5Pd2.3Cu26.9Si16.3 was modeled using classical nucleation theory with the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation, enabling a determination of the interfacial energy. [less ▲] Detailed reference viewed: 216 (25 UL)![]() ; Guennou, Mael ![]() in Journal of Physics: Condensed Matter (2020), 32(18), 183001 Recent studies carried out with atomic force microscopy or high-resolution transmission electron microscopy reveal that ferroic domain walls can exhibit different physical properties than the bulk of the ... [more ▼] Recent studies carried out with atomic force microscopy or high-resolution transmission electron microscopy reveal that ferroic domain walls can exhibit different physical properties than the bulk of the domains, such as enhanced conductivity in insulators, or polar properties in non-polar materials. In this review we show that optical techniques, in spite of the diffraction limit, also provide key insights into the structure and physical properties of ferroelectric and ferroelastic domain walls. We give an overview of the uses, specificities and limits of these techniques, and emphasize the properties of the domain walls that they can probe. We then highlight some open questions of the physics of domain walls that could benefit from their use. [less ▲] Detailed reference viewed: 111 (2 UL)![]() ; ; et al in Journal of Physics: Condensed Matter (2020), 32 Detailed reference viewed: 118 (1 UL)![]() ; ; et al in Journal of Physics: Condensed Matter (2019) The magnetic state of low temperature martensite phase in Co-substituted Ni-Mn-Sn-based ferromagnetic shape memory alloys (FSMAs) has been investigated, in view of numerous conflicting reports of ... [more ▼] The magnetic state of low temperature martensite phase in Co-substituted Ni-Mn-Sn-based ferromagnetic shape memory alloys (FSMAs) has been investigated, in view of numerous conflicting reports of occurrences of spin glass (SG), superparamagnetism (SPM) or long range anti- ferromagnetic (AF) ordering. Combination of dc magnetization, ac susceptibility and small angle neutron scattering (SANS) studies provide a clear evidence for AF order in martensitic phase of Ni45Co5Mn38Sn12 alloy and rule out SPM and SG orders. Identical studies on another alloy of close composition of Ni44Co6Mn40Sn10 point to presence of SG order in martensitic phase and absence of SPM behavior, contrary to earlier report. SANS results do show presence of nanometre-sized clusters but they are found to grow in size from 3 nm at 30 K to 11 nm at 300 K, and do not correlate with magnetism in these alloys. <P /> [less ▲] Detailed reference viewed: 71 (1 UL)![]() ; ; Fedorov, Dmitry ![]() in Journal of Physics: Condensed Matter (2019), 31 We consider an extrinsic contribution to the anomalous and spin Hall effect in dilute alloys based on Fe, Co, Ni, and Pt hosts with different substitutional impurities. It is shown that a strong skew ... [more ▼] We consider an extrinsic contribution to the anomalous and spin Hall effect in dilute alloys based on Fe, Co, Ni, and Pt hosts with different substitutional impurities. It is shown that a strong skew-scattering mechanism is absent in such crystals with multi-sheeted Fermi surfaces. Based on this finding, we conclude on the mutual exclusion of strong intrinsic and skew-scattering contributions to the considered transport phenomena. It also allows us to draw general conclusions in which materials with a giant anomalous Hall effect caused by the skew scattering can be achieved. [less ▲] Detailed reference viewed: 119 (4 UL)![]() Babbe, Finn ![]() ![]() ![]() in Journal of Physics: Condensed Matter (2019), 31 Detailed reference viewed: 160 (9 UL)![]() Habibi, Alireza ![]() in Journal of Physics: Condensed Matter (2019), 32(1), 015604 The topological index of a system determines its edge physics. However, in situations such as strong disorder where due to level repulsion the spectral gap closes, the topological indices are not well ... [more ▼] The topological index of a system determines its edge physics. However, in situations such as strong disorder where due to level repulsion the spectral gap closes, the topological indices are not well-defined. In this paper, we show that the localization length of zero modes determined by the transfer matrix method reveals much more information than the topological index. The localization length can provide not only information about the topological index of the Hamiltonian itself, but it can also provide information about the topological indices of the ‘relative’ Hamiltonians. As a case study, we study a generalized XY model (2XY model) further augmented by a generalized Dziyaloshinskii–Moriya-like (DM) interaction parameterized by that after fermionization breaks the time-reversal invariance. The parent Hamiltonian at which belongs to the BDI class is indexed by an integer winding number while the daughter Hamiltonian which belongs to class D is specified by a Z 2 index . We show that the localization length, in addition to determining Z 2, can count the number of Majorana zero modes leftover at the boundary of the daughter Hamiltonian—which are not protected by the winding number anymore. Therefore the localization length outperforms the standard topological indices in two respects: (i) it is much faster and more accurate to calculate and (ii) it can count the winding number of the parent Hamiltonian by looking into the edges of the daughter Hamiltonian. [less ▲] Detailed reference viewed: 53 (1 UL)![]() ; ; et al in Journal of Physics: Condensed Matter (2019) The magnetic state of low temperature martensite phase in Co-substituted Ni-Mn-Sn-based ferromagnetic shape memory alloys (FSMAs) has been investigated, in view of numerous conflicting reports of ... [more ▼] The magnetic state of low temperature martensite phase in Co-substituted Ni-Mn-Sn-based ferromagnetic shape memory alloys (FSMAs) has been investigated, in view of numerous conflicting reports of occurrences of spin glass (SG), superparamagnetism (SPM) or long range anti-ferromagnetic (AF) ordering. Combination of DC magnetization, AC susceptibility and small angle neutron scattering (SANS) studies provide a clear evidence for AF order in martensitic phase of Ni45Co5Mn38Sn12 alloy and rule out SPM and SG orders. Identical studies on another alloy of close composition of Ni44Co6Mn40Sn10 point to presence of SG order in martensitic phase and absence of SPM behavior, contrary to earlier report. SANS results do show presence of nanometre-sized clusters but they are found to grow in size from 3 nm at 30 K to 11 nm at 300 K, and do not correlate with magnetism in these alloys. [less ▲] Detailed reference viewed: 81 (2 UL)![]() ; ; Fedorov, Dmitry ![]() in Journal of Physics: Condensed Matter (2019), 31 Detailed reference viewed: 134 (13 UL)![]() ; ; Kreisel, Jens ![]() in Journal of Physics: Condensed Matter (2018), 30(3), Ferroic domain walls are currently investigated by several state-of-the art techniques in order to get a better understanding of their distinct functional properties. Here, principal component analysis ... [more ▼] Ferroic domain walls are currently investigated by several state-of-the art techniques in order to get a better understanding of their distinct functional properties. Here, principal component analysis (PCA) of Raman maps is used to study ferroelectric domain walls (DWs) in LiNbO3 and ferroelastic DWs in NdGaO3. It is shown that PCA allows us to quickly and reliably identify small Raman peak variations at ferroelectric DWs and that the value of a peak shift can be deduced-accurately and without a priori-from a first order Taylor expansion of the spectra. The ability of PCA to separate the contribution of ferroelastic domains and DWs to Raman spectra is emphasized. More generally, our results provide a novel route for the statistical analysis of any property mapped across a DW. [less ▲] Detailed reference viewed: 111 (4 UL)![]() ; ; Tkatchenko, Alexandre ![]() in Journal of Physics: Condensed Matter (2014), 26(21), This work reviews the increasing evidence that many-body van der Waals (vdW) or dispersion interactions play a crucial role in the structure, stability and function of a wide variety of systems in biology ... [more ▼] This work reviews the increasing evidence that many-body van der Waals (vdW) or dispersion interactions play a crucial role in the structure, stability and function of a wide variety of systems in biology, chemistry and physics. Starting with the exact expression for the electron correlation energy provided by the adiabatic connection fluctuation-dissipation theorem, we derive both pairwise and many-body interatomic methods for computing the long-range dispersion energy by considering a model system of coupled quantum harmonic oscillators within the random-phase approximation. By coupling this approach to density functional theory, the resulting many-body dispersion (MBD) method provides an accurate and efficient scheme for computing the frequency-dependent polarizability and many-body vdW energy in molecules and materials with a finite electronic gap. A select collection of applications are presented that ascertain the fundamental importance of these non-bonded interactions across the spectrum of intermolecular (the S22 and S66 benchmark databases), intramolecular (conformational energies of alanine tetrapeptide) and supramolecular (binding energy of the 'buckyball catcher') complexes, as well as molecular crystals (cohesive energies in oligoacenes). These applications demonstrate that electrodynamic response screening and beyond-pairwise many-body vdW interactions - both captured at the MBD level of theory - play a quantitative, and sometimes even qualitative, role in describing the properties considered herein. This work is then concluded with an in-depth discussion of the challenges that remain in the future development of reliable (accurate and efficient) methods for treating many-body vdW interactions in complex materials and provides a roadmap for navigating many of the research avenues that are yet to be explored. © 2014 IOP Publishing Ltd. [less ▲] Detailed reference viewed: 207 (8 UL)![]() Honecker, Dirk ![]() in Journal of Physics: Condensed Matter (2010), 23(1), 016003 Detailed reference viewed: 70 (1 UL) |
||