![]() ; ; et al in Journal of Biological Chemistry (2021) Detailed reference viewed: 44 (0 UL)![]() Singh, Charandeep ![]() ![]() ![]() in Journal of Biological Chemistry (2017), 292(3), 1005-1028 Proteomes of even well characterized organisms still contain a high percentage of proteins with unknown or uncertain molecular and/or biological function. A significant fraction of those proteins are ... [more ▼] Proteomes of even well characterized organisms still contain a high percentage of proteins with unknown or uncertain molecular and/or biological function. A significant fraction of those proteins are predicted to have catalytic properties. Here we aimed at identifying the function of the Saccharomyces cerevisiae Ydr109c protein and of its human homolog FGGY, both of which belong to the broadly conserved FGGY family of carbohydrate kinases. Functionally identified members of this family phosphorylate 3- to 7-carbon sugars or sugar derivatives, but the endogenous substrate of S. cerevisiae Ydr109c and human FGGY has remained unknown. Untargeted metabolomics analysis of an S. cerevisiae deletion mutant of YDR109C revealed ribulose as one of the metabolites with the most significantly changed intracellular concentration as compared to a wild-type strain. In human HEK293 cells, ribulose could only be detected when ribitol was added to the cultivation medium and under this condition, FGGY silencing led to ribulose accumulation. Biochemical characterization of the recombinant purified Ydr109c and FGGY proteins showed a clear substrate preference of both kinases for D-ribulose over a range of other sugars and sugar derivatives tested, including L-ribulose. Detailed sequence and structural analyses of Ydr109c and FGGY as well as homologs thereof furthermore allowed the definition of a 5-residue D-ribulokinase signature motif (TCSLV). The physiological role of the herein identified eukaryotic D-ribulokinase remains unclear, but we speculate that S. cerevisiae Ydr109c and human FGGY could act as metabolite repair enzymes, serving to re-phosphorylate free D-ribulose generated by promiscuous phosphatases from D-ribulose-5-phosphate. In human cells, FGGY can additionally participate in ribitol metabolism. [less ▲] Detailed reference viewed: 264 (15 UL)![]() ; Kraemer, Lisa ![]() ![]() in Journal of Biological Chemistry (2015) Detailed reference viewed: 195 (8 UL)![]() ; ; et al in Journal of Biological Chemistry (2012), 287(17), 14234-45 The L-galactose (Smirnoff-Wheeler) pathway represents the major route to L-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-L ... [more ▼] The L-galactose (Smirnoff-Wheeler) pathway represents the major route to L-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-L-galactose phosphorylases converting GDP-L-galactose to L-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of L-ascorbate. Here we report that the L-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the L-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-L-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and L-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, Mn superoxide dismutase, dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the L-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. [less ▲] Detailed reference viewed: 95 (3 UL)![]() Linster, Carole ![]() in Journal of Biological Chemistry (2011), 286(50), 42992-3003 A limited number of enzymes are known that play a role analogous to DNA proofreading by eliminating non-classical metabolites formed by side activities of enzymes of intermediary metabolism. Because few ... [more ▼] A limited number of enzymes are known that play a role analogous to DNA proofreading by eliminating non-classical metabolites formed by side activities of enzymes of intermediary metabolism. Because few such "metabolite proofreading enzymes" are known, our purpose was to search for an enzyme able to degrade ethylmalonyl-CoA, a potentially toxic metabolite formed at a low rate from butyryl-CoA by acetyl-CoA carboxylase and propionyl-CoA carboxylase, two major enzymes of lipid metabolism. We show that mammalian tissues contain a previously unknown enzyme that decarboxylates ethylmalonyl-CoA and, at lower rates, methylmalonyl-CoA but that does not act on malonyl-CoA. Ethylmalonyl-CoA decarboxylase is particularly abundant in brown adipose tissue, liver, and kidney in mice, and is essentially cytosolic. Because Escherichia coli methylmalonyl-CoA decarboxylase belongs to the family of enoyl-CoA hydratase (ECH), we searched mammalian databases for proteins of uncharacterized function belonging to the ECH family. Combining this database search approach with sequencing data obtained on a partially purified enzyme preparation, we identified ethylmalonyl-CoA decarboxylase as ECHDC1. We confirmed this identification by showing that recombinant mouse ECHDC1 has a substantial ethylmalonyl-CoA decarboxylase activity and a lower methylmalonyl-CoA decarboxylase activity but no malonyl-CoA decarboxylase or enoyl-CoA hydratase activity. Furthermore, ECHDC1-specific siRNAs decreased the ethylmalonyl-CoA decarboxylase activity in human cells and increased the formation of ethylmalonate, most particularly in cells incubated with butyrate. These findings indicate that ethylmalonyl-CoA decarboxylase may correct a side activity of acetyl-CoA carboxylase and suggest that its mutation may be involved in the development of certain forms of ethylmalonic aciduria. [less ▲] Detailed reference viewed: 173 (5 UL)![]() ; ; et al in Journal of Biological Chemistry (2011), 286(48), 41246-52 The reduced forms of NAD and NADP, two major nucleotides playing a central role in metabolism, are continuously damaged by enzymatic or heat-dependent hydration. We report the molecular identification of ... [more ▼] The reduced forms of NAD and NADP, two major nucleotides playing a central role in metabolism, are continuously damaged by enzymatic or heat-dependent hydration. We report the molecular identification of the eukaryotic dehydratase that repairs these nucleotides and show that this enzyme (Carkd in mammals, YKL151C in yeast) catalyzes the dehydration of the S form of NADHX and NADPHX, at the expense of ATP, which is converted to ADP. Surprisingly, the Escherichia coli homolog, YjeF, a bidomain protein, catalyzes a similar reaction, but using ADP instead of ATP. The latter reaction is ascribable to the C-terminal domain of YjeF. This represents an unprecedented example of orthologous enzymes using either ADP or ATP as phosphoryl donor. We also show that eukaryotic proteins homologous to the N-terminal domain of YjeF (apolipoprotein A-1-binding protein (AIBP) in mammals, YNL200C in yeast) catalyze the epimerization of the S and R forms of NAD(P)HX, thereby allowing, in conjunction with the energy-dependent dehydratase, the repair of both epimers of NAD(P)HX. Both enzymes are very widespread in eukaryotes, prokaryotes, and archaea, which together with the ADP dependence of the dehydratase in some species indicates the ancient origin of this repair system. [less ▲] Detailed reference viewed: 148 (6 UL)![]() ; ; et al in Journal of Biological Chemistry (2011), 286(24), 21511-23 The plant VTC2 gene encodes GDP-L-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C ... [more ▼] The plant VTC2 gene encodes GDP-L-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-D-glucose to GDP and D-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-D-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-D-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-D-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-D-glucose in the C10F3.4 mutant worms, suggesting that the GDP-D-glucose phosphorylase may function to remove GDP-D-glucose formed by GDP-D-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological D-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals. [less ▲] Detailed reference viewed: 233 (3 UL)![]() ![]() ; Schneider, Jochen ![]() in Journal of Biological Chemistry (2011), 286(4), 2933-2945 Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the ... [more ▼] Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease. [less ▲] Detailed reference viewed: 136 (0 UL)![]() Linster, Carole ![]() in Journal of Biological Chemistry (2008), 283(27), 18483-92 The Arabidopsis thaliana VTC2 gene encodes an enzyme that catalyzes the conversion of GDP-L-galactose to L-galactose 1-phosphate in the first committed step of the Smirnoff-Wheeler pathway to plant ... [more ▼] The Arabidopsis thaliana VTC2 gene encodes an enzyme that catalyzes the conversion of GDP-L-galactose to L-galactose 1-phosphate in the first committed step of the Smirnoff-Wheeler pathway to plant vitamin C synthesis. Mutations in VTC2 had previously been found to lead to only partial vitamin C deficiency. Here we show that the Arabidopsis gene At5g55120 encodes an enzyme with high sequence identity to VTC2. Designated VTC5, this enzyme displays substrate specificity and enzymatic properties that are remarkably similar to those of VTC2, suggesting that it may be responsible for residual vitamin C synthesis in vtc2 mutants. The exact nature of the reaction catalyzed by VTC2/VTC5 is controversial because of reports that kiwifruit and Arabidopsis VTC2 utilize hexose 1-phosphates as phosphorolytic acceptor substrates. Using liquid chromatography-mass spectroscopy and a VTC2-H238N mutant, we provide evidence that the reaction proceeds through a covalent guanylylated histidine residue within the histidine triad motif. Moreover, we show that both the Arabidopsis VTC2 and VTC5 enzymes catalyze simple phosphorolysis of the guanylylated enzyme, forming GDP and L-galactose 1-phosphate from GDP-L-galactose and phosphate, with poor reactivity of hexose 1-phosphates as phosphorolytic acceptors. Indeed, the endogenous activities from Japanese mustard spinach, lemon, and spinach have the same substrate requirements. These results show that Arabidopsis VTC2 and VTC5 proteins and their homologs in other plants are enzymes that guanylylate a conserved active site His residue with GDP-L-galactose, forming L-galactose 1-phosphate for vitamin C synthesis, and regenerate the enzyme with phosphate to form GDP. [less ▲] Detailed reference viewed: 99 (2 UL)![]() Linster, Carole ![]() in Journal of Biological Chemistry (2007), 282(26), 18879-85 The first committed step in the biosynthesis of L-ascorbate from D-glucose in plants requires conversion of GDP-L-galactose to L-galactose 1-phosphate by a previously unidentified enzyme. Here we show ... [more ▼] The first committed step in the biosynthesis of L-ascorbate from D-glucose in plants requires conversion of GDP-L-galactose to L-galactose 1-phosphate by a previously unidentified enzyme. Here we show that the protein encoded by VTC2, a gene mutated in vitamin C-deficient Arabidopsis thaliana strains, is a member of the GalT/Apa1 branch of the histidine triad protein superfamily that catalyzes the conversion of GDP-L-galactose to L-galactose 1-phosphate in a reaction that consumes inorganic phosphate and produces GDP. In characterizing recombinant VTC2 from A. thaliana as a specific GDP-L-galactose/GDP-D-glucose phosphorylase, we conclude that enzymes catalyzing each of the ten steps of the Smirnoff-Wheeler pathway from glucose to ascorbate have been identified. Finally, we identify VTC2 homologs in plants, invertebrates, and vertebrates, suggesting that a similar reaction is used widely in nature. [less ▲] Detailed reference viewed: 149 (3 UL)![]() ![]() ; Wiesinger, Monique ![]() in Journal of Biological Chemistry (2007), 282(2), 1238-48 Although fusion proteins of the extracellular parts of receptor subunits termed cytokine traps turned out to be promising cytokine inhibitors for anti-cytokine therapies, their mode of action has not been ... [more ▼] Although fusion proteins of the extracellular parts of receptor subunits termed cytokine traps turned out to be promising cytokine inhibitors for anti-cytokine therapies, their mode of action has not been analyzed. We developed a fusion protein consisting of the ligand binding domains of the IL-6 receptor subunits IL-6Ralpha and gp130 that acts as a highly potent IL-6 inhibitor. Gp130 is a shared cytokine receptor also used by the IL-6-related cytokines oncostatin M and leukemia inhibitory factor. In this study, we have shown that the IL-6 receptor fusion protein (IL-6-RFP) is a specific IL-6 inhibitor that does not block oncostatin M or leukemia inhibitory factor. We characterized the complex of IL-6-RFP and fluorescently labeled IL-6 (YFPIL-6) by blue native PAGE and gel filtration. A 2-fold molar excess of IL-6-RFP over IL-6 was sufficient to entirely bind IL-6 in a complex with IL-6-RFP. As shown by treatment with urea and binding competition experiments, the complex of IL-6 and IL-6-RFP is more stable than the complex of IL-6, soluble IL-6Ralpha, and soluble gp130. By live cell imaging, we have demonstrated that YFP-IL-6 bound to the surface of cells expressing gp130-CFP is removed from the plasma membrane upon the addition of IL-6-RFP. The apparent molecular mass of the IL-6.IL-6-RFP complex determined by blue native PAGE and gel filtration suggests that IL-6 is trapped in a structure analogous to the native hexameric IL-6 receptor complex. Thus, fusion of the ligand binding domains of heteromeric receptors leads to highly specific cytokine inhibitors with superior activity compared with the separate soluble receptors. [less ▲] Detailed reference viewed: 62 (1 UL)![]() ![]() ; ; et al in Journal of Biological Chemistry (2006), 281(7), 4024-34 The oncostatin M receptor (OSMR) is part of receptor complexes for oncostatin M and interleukin-31. Signaling events are triggered by Jaks (Janus kinases) that constitutively bind to membrane-proximal ... [more ▼] The oncostatin M receptor (OSMR) is part of receptor complexes for oncostatin M and interleukin-31. Signaling events are triggered by Jaks (Janus kinases) that constitutively bind to membrane-proximal receptor regions. Besides their established role in signaling, Jaks are involved in the regulation of the surface expression of several cytokine receptors. Here, we analyzed the structural requirements within the human OSMR that underlie its limited surface expression in the absence of associated Jaks. We identified three dileucine-like motifs within the Jak-binding region of the OSMR that control receptor surface and overall expression. A receptor mutant in which all three motifs were mutated to alanine displayed markedly increased surface expression. Although the surface half-life of this mutant was increased compared with that of the wild-type receptor, no difference in the internalization rate was detectable, implying that these receptors differ in their post-endocytic fate. The protein stability of the wild-type receptor was markedly lower than that of mutant receptors, but could be strongly increased in the presence of the lysosomal inhibitor chloroquine. Our data are consistent with the dileucine motifs being involved in destabilization of receptors devoid of associated Jaks as part of a quality control ensuring signaling competence of OSMRs. [less ▲] Detailed reference viewed: 118 (0 UL)![]() ![]() ; ; et al in Journal of Biological Chemistry (2006), 281(5), 2578-84 A dynamic mathematical model was developed to describe the uptake of various carbohydrates (glucose, lactose, glycerol, sucrose, and galactose) in Escherichia coli. For validation a number of isogenic ... [more ▼] A dynamic mathematical model was developed to describe the uptake of various carbohydrates (glucose, lactose, glycerol, sucrose, and galactose) in Escherichia coli. For validation a number of isogenic strains with defined mutations were used. By considering metabolic reactions as well as signal transduction processes influencing the relevant pathways, we were able to describe quantitatively the phenomenon of catabolite repression in E. coli. We verified model predictions by measuring time courses of several extra- and intracellular components such as glycolytic intermediates, EII-ACrr phosphorylation level, both LacZ and PtsG concentrations, and total cAMP concentrations under various growth conditions. The entire data base consists of 18 experiments performed with nine different strains. The model describes the expression of 17 key enzymes, 38 enzymatic reactions, and the dynamic behavior of more than 50 metabolites. The different phenomena affecting the phosphorylation level of EIIACrr, the key regulation molecule for inducer exclusion and catabolite repression in enteric bacteria, can now be explained quantitatively. [less ▲] Detailed reference viewed: 66 (0 UL)![]() ![]() ; ; et al in Journal of Biological Chemistry (2005), 280(23), 21700-5 Transcription factors of the STAT (signal transducer and activator of transcription) family are important in signal transduction of cytokines. They are subject to post-translational modification by ... [more ▼] Transcription factors of the STAT (signal transducer and activator of transcription) family are important in signal transduction of cytokines. They are subject to post-translational modification by phosphorylation on tyrosine and serine residues. Recent evidence suggested that STATs are methylated on a conserved arginine residue within the N-terminal region. STAT arginine methylation has been described to be important for STAT function and loss of arginine methylation was discussed to be involved in interferon resistance of cancer cells. Here we provide several independent lines of evidence indicating that the issue of arginine methylation of STATs has to be reassessed. First, we show that treatment of melanoma and fibrosarcoma cells with inhibitors used to suppress methylation (N-methyl-2-deoxyadenosine, adenosine, dl-homocysteine) had profound and rapid effects on phosphorylation of STAT1 and STAT3 but also on p38 and Erk signaling cascades which are known to cross-talk with the Jak/STAT pathway. Second, we show that anti-methylarginine antibodies did not precipitate specifically STAT1 or STAT3. Third, we show that mutation of Arg(31) to Lys led to destabilization of STAT1 and STAT3, implicating an important structural role of Arg(31). Finally, purified catalytically active protein arginine methyltransferases (PRMT1, -2, -3, -4, and -6) did not methylate STAT proteins, and cotransfection with PRMT1 did not affect STAT1-controlled reporter gene activity. Taken together, our data suggest the absence of arginine methylation of STAT1 and STAT3. [less ▲] Detailed reference viewed: 136 (2 UL)![]() ![]() ; ; et al in Journal of Biological Chemistry (2005), 280(36), 31478-88 The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine signal transduction. SOCS3 is a key negative regulator of interleuking-6 (IL-6) signal transduction. Furthermore ... [more ▼] The suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine signal transduction. SOCS3 is a key negative regulator of interleuking-6 (IL-6) signal transduction. Furthermore, SOCS3 was shown to be phosphorylated upon treatment of cells with IL-2, and this has been reported to regulate its function and half-life. We set out to investigate whether SOCS3 phosphorylation may play a role in IL-6 signaling. Tyrosine-phosphorylated SOCS3 was detected upon treatment of mouse embryonic fibroblasts with IL-6. Interestingly, the observed SOCS3 phosphorylation does not require SOCS3 recruitment to phosphotyrosine (Tyr(P)) 759 of gp130, and the kinetics of SOCS3 phosphorylation do not match the activation kinetics of the Janus kinases. This suggests that other kinases may be involved in SOCS3 phosphorylation. Using Src and Janus kinase inhibitors as well as Src kinase-deficient mouse embryonic fibroblasts, we provide evidence that Src kinases, which we found to be constitutively active in these cells, are involved in the phosphorylation of IL-6-induced SOCS3. In addition, we found that receptor-tyrosine kinases such as platelet-derived growth factor receptor or epidermal growth factor receptor can very potently phosphorylate IL-6-induced SOCS3. Taken together, these results suggest that SOCS3 phosphorylation is not a JAK-mediated phenomenon but is dependent on the activity of other kinases such as Src kinases or receptor-tyrosine kinases, which can either be constitutively active or activated by an additional stimulus. [less ▲] Detailed reference viewed: 64 (0 UL)![]() ; Gu, Wei ![]() in Journal of Biological Chemistry (2005), 280(25), 23668-23674 Cyclophilin A ( CypA) is a peptidyl-prolyl cis/trans-isomerase that is involved in multiple signaling events of eukaryotic cells. It might either act as a catalyst for prolyl bond isomerization, or it can ... [more ▼] Cyclophilin A ( CypA) is a peptidyl-prolyl cis/trans-isomerase that is involved in multiple signaling events of eukaryotic cells. It might either act as a catalyst for prolyl bond isomerization, or it can form stoichiometric complexes with target proteins. We have investigated the linear sequence recognition code for CypA by phage display and found the consensus motif FGPXLp to be selected after five rounds of panning. The peptide FGP-DLPAGD showed inhibition of the isomerase reaction and NMR chemical shift mapping experiments highlight the CypA interaction epitope. Ligand docking suggests that the peptide was able to bind to CypA in the cis- and trans-conformation. Protein Data Bank searches reveal that many human proteins contain the consensus motif, and several of these protein motifs are shown to interact with CypA in vitro. These sequences represent putative target sites for binding of CypA to intracellular proteins. [less ▲] Detailed reference viewed: 107 (0 UL)![]() ![]() Thiele, Ines ![]() in Journal of Biological Chemistry (2005), 280(12), 11683-95 The human mitochondrial metabolic network was recently reconstructed based on proteomic and biochemical data. Linear programming and uniform random sampling were applied herein to identify candidate ... [more ▼] The human mitochondrial metabolic network was recently reconstructed based on proteomic and biochemical data. Linear programming and uniform random sampling were applied herein to identify candidate steady states of the metabolic network that were consistent with the imposed physico-chemical constraints and available experimental data. The activity of the mitochondrion was studied under four metabolic conditions: normal physiologic, diabetic, ischemic, and dietetic. Pairwise correlations between steady-state reaction fluxes were calculated in each condition to evaluate the dependence among the reactions in the network. Applying constraints on exchange fluxes resulted in predictions for intracellular fluxes that agreed with experimental data. Analyses of the steady-state flux distributions showed that the experimentally observed reduced activity of pyruvate dehydrogenase in vivo could be a result of stoichiometric constraints and therefore would not necessarily require enzymatic inhibition. The observed changes in the energy metabolism of the mitochondrion under diabetic conditions were used to evaluate the impact of previously suggested treatments. The results showed that neither normalized glucose uptake nor decreased ketone body uptake have a positive effect on the mitochondrial energy metabolism or network flexibility. Taken together, this study showed that sampling of the steady-state flux space is a powerful method to investigate network properties under different conditions and provides a basis for in silico evaluations of effects of potential disease treatments. [less ▲] Detailed reference viewed: 131 (1 UL)![]() ![]() Salsmann, Alexandre ![]() ![]() ![]() in Journal of Biological Chemistry (2005), 280(39), 33610-33619 A number of RGD-type integrins rely on a synergistic site in addition to the canonical RGD site for ligand binding and signaling, although it is still unclear whether these two recognition sites function ... [more ▼] A number of RGD-type integrins rely on a synergistic site in addition to the canonical RGD site for ligand binding and signaling, although it is still unclear whether these two recognition sites function independently, synergistically, or competitively. Experimental evidence has suggested that fibrinogen binding to the RGD-type integrin alphaIIbbeta3 occurs exclusively through the synergistic gamma(400-411) sequence, thus questioning the functional role of the RGD recognition site. Here we have investigated the respective role of the fibrinogen gamma(400-411) sequence and the RGD motif in the molecular events leading to ligand-induced alphaIIbbeta3-dependent Chinese hamster ovary (CHO) cell or platelet spreading, by using intact fibrinogen and well characterized plasmin-generated fibrinogen fragments containing either the RGD motif (fragment C) or the gamma(400-411) sequence (fragment D), and CHO cells expressing resting wild type (alphaIIbbeta3wt), constitutively active (alphaIIbbeta3T562N), or non-functional (alphaIIbbeta3D119Y) receptors. Our data provide evidence that the gamma(400-411) site by itself is able to initiate alphaIIbbeta3 clustering and recruitment of intracellular proteins to early focal complexes, mediating cell attachment, FAK phosphorylation, and Rac1 activation, while the RGD motif subsequently acts as a molecular switch on the beta3 subunit to trigger cell spreading. More importantly, we show that the premier functional role of the RGD site is not to reinforce cell attachment but, rather, to imprint a conformational change on the beta3 subunit leading to maximal RhoA activation and actin cytoskeleton organization in CHO cells as well as in platelets. Finally, alphaIIbbeta3-dependent RhoA stimulation and cell spreading, but not cell attachment, are Src-dependent and phosphoinositide 3-kinase-independent and are inhibited by the Src antagonist PP2. [less ▲] Detailed reference viewed: 107 (10 UL)![]() ![]() ; Haan, Serge ![]() in Journal of Biological Chemistry (2005), 280(27), 25760-8 The presence of a Src homology 2 (SH2) domain sequence similarity in the sequence of Janus kinases (Jaks) has been discussed since the first descriptions of these enzymes. We performed an in depth study ... [more ▼] The presence of a Src homology 2 (SH2) domain sequence similarity in the sequence of Janus kinases (Jaks) has been discussed since the first descriptions of these enzymes. We performed an in depth study to determine the function of the Jak1 SH2 domain. We investigated the functionality of the Jak1 SH2 domain by stably reconstituting Jak1-defective human fibrosarcoma cells U4C with endogenous amounts of Jak1 in which the crucial arginine residue Arg466 within the SH2 domain has been replaced by lysine. This mutant still binds to the receptor subunits gp130 and OSMR. Moreover, the SH2 R466K mutation does not affect the subcellular distribution of Jak1 as assessed by cell fractionation and confocal microscopy of cells expressing endogenous levels of non-tagged or a yellow fluorescent protein (YFP)-tagged Jak1-R466K, respectively. Likewise, the signaling capacity of Jak1 was not affected by this point mutation. However, we found that the SH2 domain is structurally important for cytokine receptor binding and surface expression of the OSMR. [less ▲] Detailed reference viewed: 132 (2 UL)![]() ; Kreis, Stephanie ![]() in Journal of Biological Chemistry (2004), 279(21), 22258-22266 The cytoskeletal protein talin, which provides a direct link between integrins and actin filaments, has been shown to contain two distinct binding sites for integrin β subunits. Here, we report the ... [more ▼] The cytoskeletal protein talin, which provides a direct link between integrins and actin filaments, has been shown to contain two distinct binding sites for integrin β subunits. Here, we report the precise delimitation and a first functional analysis of the talin rod domain integrin-binding site. Partially overlapping cDNAs covering the entire human talin gene were transiently expressed as DsRed fusion proteins in Chinese hamster ovary cells expressing α IIbβ 3, linked to green fluorescent protein (GFP). Two-color fluorescence analysis of the transfected cells, spread on fibrinogen, revealed distinct subcellular staining patterns including focal adhesion, actin filament, and granular labeling for different talin fragments. The rod domain fragment G (residues 1984-2344), devoid of any known actin- or vinculin-binding sites, colocalized with β 3-GFP in focal adhesions. Direct in vitro interaction of fragment G with native platelet integrin α IIbβ 3 or with the recombinant wild type, but not the Y747A mutant β 3 cytoplasmic tail, linked to glutathione S-transferase, was demonstrated by surface plasmon resonance analysis and pull-down assays, respectively. Here, we demonstrate for the first time the in vivo relevance of this interaction by fluorescence resonance energy transfer between β 3-GFP and DsRed-talin fragment G. Further in vitro pull-down studies allowed us to map out the integrin-binding site within fragment G to a stretch of 130 residues (fragment J, residues 1984-2113) that also localized to focal adhesions. Finally, we show by a cell biology approach that this integrin- binding site within the talin rod domain is important for β 3-cytoskeletal interactions but does not participate in α IIbβ 3 activation. [less ▲] Detailed reference viewed: 160 (6 UL) |
||