References of "International Journal of Satellite Communications and Networking"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSupervised machine learning for power and bandwidth management in very high throughput satellite systems
Ortiz Gomez, Flor de Guadalupe UL; Tarchi, Daniele; Martinez, Ramon et al

in International Journal of Satellite Communications and Networking (2021)

In the near future, very high throughput satellite (VHTS) systems are expected to have a high increase in traffic demand. However, this increase will not be uniform over the service area and will be also ... [more ▼]

In the near future, very high throughput satellite (VHTS) systems are expected to have a high increase in traffic demand. However, this increase will not be uniform over the service area and will be also dynamic. A solution to this problem is given by flexible payload architectures; however, they require that resource management is performed autonomously and with low latency. In this paper, we propose the use of supervised machine learning, in particular a classification algorithm using a neural network, to manage the resources available in flexible payload architectures. Use cases are presented to demonstrate the effectiveness of the proposed approach, and a discussion is made on all the challenges that are presented. [less ▲]

Detailed reference viewed: 50 (12 UL)
Full Text
Peer Reviewed
See detailGround‐to‐GEO optical feeder links for very high throughput satellite networks: Accent on diversity techniques
Mengali, Alberto; Kourogiorgas, Charilaos; Lyras, Nikolaos et al

in International Journal of Satellite Communications and Networking (2020)

This paper studies the use of optical feeder links in very high throughput satellites (VHTS) networks with emphasis on gateway diversity techniques to mitigate the inherent propagation losses in optical ... [more ▼]

This paper studies the use of optical feeder links in very high throughput satellites (VHTS) networks with emphasis on gateway diversity techniques to mitigate the inherent propagation losses in optical frequencies. Focusing on a GEO scenario, the paper considers a system‐wide approach investigating various challenges of optical feeder links. These include transmission schemes amenable for transparent on‐board processing, optical channel models taking into account blockage by clouds and fading caused by atmospheric turbulence in addition to complexity of on‐board and on‐ground processing. The channel models are then used to dimension the ground segment towards ensuring a given availability percentage (e.g., 99.9%). The channel model and payload complexity further influence the choice of link layer techniques used for counteracting fading due to atmospheric turbulence in the absence of blockage. An elaborate end‐to‐end simulator incorporating the proposed channel models capturing the nuances of various processing blocks like optical‐electrical conversion is developed. The system performance results provide interesting insights and a framework for assessing the feasibility and advantages of optical feeder links in VHTS systems. [less ▲]

Detailed reference viewed: 49 (3 UL)
Full Text
Peer Reviewed
See detailLink Adaptation and SINR errors in Practical Multicast Multibeam Satellite Systems with Linear Precoding
Tato, Anxo; Andrenacci, Stefano; Lagunas, Eva UL et al

in International Journal of Satellite Communications and Networking (2020)

Detailed reference viewed: 28 (1 UL)
Full Text
Peer Reviewed
See detailLink Adaptation and SINR errors in Practical Multicast Multibeam Satellite Systems with Linear Precoding
Tato, Anxo; Andrenacci, Stefano UL; Lagunas, Eva UL et al

in International Journal of Satellite Communications and Networking (2020)

Detailed reference viewed: 125 (29 UL)
Full Text
Peer Reviewed
See detailModeling and Implementation of 5G Edge Caching over Satellite
Vu, Thang Xuan UL; Poirier, Yannick; Chatzinotas, Symeon UL et al

in International Journal of Satellite Communications and Networking (2020)

The fifth generation (5G) wireless networks have to deal with the high data rate and stringent latency requirements due to the massive invasion of connected devices and data-hungry applications. Edge ... [more ▼]

The fifth generation (5G) wireless networks have to deal with the high data rate and stringent latency requirements due to the massive invasion of connected devices and data-hungry applications. Edge caching is a promising technique to overcome these challenges by prefetching the content closer to the end users at the edge node’s local storage. In this paper, we analyze the performance of edge caching 5G networks with the aid of satellite communication systems. Firstly, we investigate the satellite-aided edge caching systems in two promising use cases: a) in dense urban areas, and b) in sparsely populated regions, e.g., rural areas. Secondly, we study the effectiveness of satellite systems via the proposed satellite-aided caching algorithm, which can be used in three configurations: i) mono-beam satellite, ii) multi-beam satellite, and iii) hybrid mode. Thirdly, the proposed caching algorithm is evaluated by using both empirical Zipf-distribution data and the more realistic Movielens dataset. Last but not least, the proposed caching scheme is implemented and tested by our developed demonstrators which allow real-time analysis of the cache hit ratio and cost analysis. [less ▲]

Detailed reference viewed: 158 (15 UL)
Full Text
Peer Reviewed
See detailEnhancing mobile services with DVB-S2X superframing
Mazzali, Nicolò UL; Boumard, Sandrine; Kinnunen, Jouko et al

in International Journal of Satellite Communications and Networking (2018)

DVB-S2X is the cornerstone for satellite communication standards forming the state of the art of broadband satellite waveforms. In this paper, we propose new application scenarios and advanced techniques ... [more ▼]

DVB-S2X is the cornerstone for satellite communication standards forming the state of the art of broadband satellite waveforms. In this paper, we propose new application scenarios and advanced techniques, including a reference design implementing superframing, predistortion, a robust synchronization chain, and a plug-and-play channel interleaver. We demonstrate by means of software simulations and hardware tests that the DVB-S2X can be a common technology enabler for land-mobile, aeronautical, and maritime satellite scenarios in addition to the more traditional VSAT scenario, even in very challenging conditions (eg, very low signal-to-noise ratio). [less ▲]

Detailed reference viewed: 171 (7 UL)
Full Text
Peer Reviewed
See detailReduced complexity satellite broadcast receiver with interference mitigation in correlated noise
Abu Shaban, Zohair UL; Mehrpouyan, Hani UL; Shankar, Bhavani UL et al

in International Journal of Satellite Communications and Networking (2018), 36(5),

ry The recent commercial trends towards using smaller dish antennas for satellite receivers and the growing density of broadcasting satellites necessitate the application of robust adjacent satellite ... [more ▼]

ry The recent commercial trends towards using smaller dish antennas for satellite receivers and the growing density of broadcasting satellites necessitate the application of robust adjacent satellite interference cancellation schemes. This orbital density growth along with the wider beamwidth of a smaller dish have imposed an overloaded scenario at the satellite receiver, where the number of transmitting satellites exceeds the number of receiving elements at the dish antenna. To ensure successful operation in this practical scenario, we propose a satellite receiver that enhances signal detection from the desired satellite by mitigating the interference from neighboring satellites. Towards this objective, we propose an enhanced list‐based group‐wise search detection (E‐LGSD) receiver under the assumption of spatially correlated additive noise. To further enhance detection performance, the proposed satellite receiver utilizes a newly designed whitening filter to remove the spatial correlation among the noise parameters, while also applying a preprocessor that maximizes the signal‐to‐interference‐plus‐noise ratio. We exploit the structure of this filter and propose a reduced complexity LGSD (RC‐LGSD) receiver. Extensive simulations under practical scenarios show that the proposed receiver enhances the performance of satellite broadcast systems in the presence of adjacent satellite interference compared with existing methods. Also, under pointing error, RC‐LGSD exhibits similar behavior to that of the optimum receiver. [less ▲]

Detailed reference viewed: 176 (0 UL)
Full Text
See detailPer-antenna Power Minimization in Symbol-level Precoding for the Multi-beam Satellite Downlink
Spano, Danilo UL; Chatzinotas, Symeon UL; Andrenacci, Stefano UL et al

in International Journal of Satellite Communications and Networking (2018)

This paper addresses the problem of multi-user interference in the forward downlink channel of a multi-beam satellite system. A symbol-level precoding scheme is considered, in order to exploit the multi ... [more ▼]

This paper addresses the problem of multi-user interference in the forward downlink channel of a multi-beam satellite system. A symbol-level precoding scheme is considered, in order to exploit the multi-user interference and transform it into useful power at the receiver side, through a joint utilization of the data information and the channel state information. In this context, a per-antenna power minimization scheme is proposed, under Quality-of-Service constraints, for multi-level modulation schemes. The consideration of the power limitations individually for each transmitting RF chain is a central aspect of this work, and it allows to deal with systems using separate per-antenna amplifiers. Moreover, this feature is also particularly relevant for systems suffering non-linear effects of the channel. This is the case of satellite systems, where the non-linear amplifiers should be properly driven in order to reduce the detrimental saturation effect. In the proposed scheme, the transmitted signals are designed in order to reduce the power peaks, while guaranteeing some specific target signal-to-noise ratios at the receivers. Numerical results are presented in order to show the effectiveness of the proposed scheme, which is compared both to the state of the art in symbol-level precoding and to the conventional MMSE precoding approach. [less ▲]

Detailed reference viewed: 243 (31 UL)
Full Text
Peer Reviewed
See detailSANSA - Hybrid Terrestrial-Satellite Backhaul Network: Scenarios, Use cases, KPIs, Architecture, Network and Physical Layer Techniques
Ziaragkas, Georgios; Poziopoulou, Georgia; Núñez-Martínez, Jose et al

in International Journal of Satellite Communications and Networking (2017)

SANSA (Shared Access terrestrial-satellite backhaul Network enabled by Smart Antennas) is a project funded by the EU under the H2020 program. The main aim of SANSA is to boost the performance of mobile ... [more ▼]

SANSA (Shared Access terrestrial-satellite backhaul Network enabled by Smart Antennas) is a project funded by the EU under the H2020 program. The main aim of SANSA is to boost the performance of mobile wireless backhaul networks in terms of capacity, energy efficiency and resilience against link failure or congestion while easing the deployment in both rural and urban areas and assuring at the same time an efficient use of the spectrum. This paper provides an overview and the first results of the project and, more specifically, it describes the regulatory environment, the State of The Art of mobile backhauling technologies regarding Ka band, the scenarios, the use cases, and the KPIs along with the SANSA architecture, network (NET), and physical (PHY) layer techniques used to enhance wireless backhauling capabilities. [less ▲]

Detailed reference viewed: 384 (40 UL)
Full Text
Peer Reviewed
See detailCognitive approaches to enhance spectrum availability for satellite systems
Chatzinotas, Symeon UL; Evans, Barry; Guidotti, Alessandro et al

in International Journal of Satellite Communications and Networking (2016)

Cognitive radio technologies have achieved in the recent years an increasing interest for the possible gain in terms of spectrum usage with respect to unshared approaches. While most of the attention has ... [more ▼]

Cognitive radio technologies have achieved in the recent years an increasing interest for the possible gain in terms of spectrum usage with respect to unshared approaches. While most of the attention has been devoted to the cognitive coexistence between terrestrial systems, the coexistence between terrestrial and satellite communications is also seen as a viable option. Cognitive radio for satellite communications (CoRaSat) has been a European Commission seventh Framework Program project funded under the ICT Call 8. CoRaSat aimed at investigating, developing, and demonstrating cognitive radio techniques in satellite communication systems for flexible and dynamic spectrum access. In this paper, the CoRaSat cognitive approaches and techniques, investigated, developed, and demonstrated as most relevant to satellite communications, are described. In particular, the focus is on spectrum awareness, that is, database and spectrum sensing approaches, and on spectrum exploitation algorithms, that is, resource allocation and beamforming algorithms, to enable the use of spectrum for satellite communications using shared bands. [less ▲]

Detailed reference viewed: 302 (12 UL)
Full Text
Peer Reviewed
See detailImplementing polarization shift keying over satellite – system design and measurement results
Arend, Lionel; Sperber, Ray; Marso, Michel UL et al

in International Journal of Satellite Communications and Networking (2016), 34(2), 211-229

Polarization shift keying (PolSK) is a digital modulation technique using the state of polarization of an electromagnetic wave as the signalling quantity. PolSK comes from fibre communications, where the ... [more ▼]

Polarization shift keying (PolSK) is a digital modulation technique using the state of polarization of an electromagnetic wave as the signalling quantity. PolSK comes from fibre communications, where the channel offers two orthogonal states of polarization. This article develops on the idea to adapt this technology to satellite communications, where similar channel conditions exist. For this purpose, a digital PolSK modem was implemented on a programmable logic board. A proposal for constellation design as well as thoughts on synchronization of PolSK over satellite is presented. The modem was used to demonstrate a 16-state Polarization Shift Keying link over a commercial satellite in Ku band. Measurements have been conducted in a back-to-back setup on intermediate frequency and on a Ku band transponder simulator to assess the impact of path-length differences, carrier recovery and non-linearity. [less ▲]

Detailed reference viewed: 186 (3 UL)
Full Text
Peer Reviewed
See detailInline Interference Mitigation Techniques for Spectral Coexistence of GEO and NGEO Satellites
Sharma, Shree Krishna UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in International Journal of Satellite Communications and Networking (2014)

The interest towards the deployment of Low Earth Orbit (LEO)/Medium Earth Orbit (MEO) satellite systems in several frequency bands is increasing due to the requirement of low latency for real-time systems ... [more ▼]

The interest towards the deployment of Low Earth Orbit (LEO)/Medium Earth Orbit (MEO) satellite systems in several frequency bands is increasing due to the requirement of low latency for real-time systems and high demand of broadband data. When the number of usable Non-Geostationary (NGEO) satellites, that is, LEO/MEO in space, increases, the frequency coexistence between the NGEO satellite systems with the already existing geostationary (GEO) satellite networks becomes a requisite. In this context, it is crucial to explore interference mitigation techniques between GEO and NGEO systems in order to allow their spectral coexistence. More specifically, in the coexistence scenario of GEO and NGEO satellite networks, in-line interference may be a serious problem, especially in the equatorial region. In this paper, we provide several frequency sharing studies in the context of the coexistence of an NGEO satellite link with another NGEO/GEO satellite link. Furthermore, we carry out interference analysis between GEO and MEO satellite systems considering the case of the O3b satellite system and propose an adaptive power control technique for both the uplink and downlink scenarios in order to mitigate the in-line interference. Moreover, we suggest several cognitive solutions for mitigating the in-line interference and provide future research issues. [less ▲]

Detailed reference viewed: 332 (30 UL)
Full Text
Peer Reviewed
See detailApplicability of MIMO to satellite communications
Kyrolainen, Jukka; Hulkonnen, Ari; Juha, Ylitalo et al

in International Journal of Satellite Communications and Networking (2014)

This paper presents achievements of an on-going activity where the applicability of MIMO to satellite communications with Digital Video Broadcasting – Satellite services to Handhelds as the key ... [more ▼]

This paper presents achievements of an on-going activity where the applicability of MIMO to satellite communications with Digital Video Broadcasting – Satellite services to Handhelds as the key application is studied. The potential satellite and hybrid satellite-terrestrial MIMO scenarios are described, and the applicable MIMO schemes for each scenario are selected. The performance of the MIMO schemes was studied by performing comprehensive computer simulations, and the main results are presented in this paper. [less ▲]

Detailed reference viewed: 344 (6 UL)
Full Text
Peer Reviewed
See detailCognitive Beamhopping for Spectral Coexistence of Multibeam Satellites
Sharma, Shree Krishna UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in International Journal of Satellite Communications and Networking (2014)

Herein, the spectral coexistence scenario of two multibeam satellites over a common coverage area is studied where a primary satellite produces larger beams while a secondary satellite has smaller beams ... [more ▼]

Herein, the spectral coexistence scenario of two multibeam satellites over a common coverage area is studied where a primary satellite produces larger beams while a secondary satellite has smaller beams. A novel cognitive beamhopping satellite system is proposed assuming that the secondary gateway is aware of the primary’s beamhopping pattern. The performance of the proposed system is evaluated and compared with that of conventional multibeam and beamhopping systems in terms of throughput. It is shown that the proposed system significantly enhances the Spectral Efficiency (SE) in comparison to other systems. Furthermore, a power control technique is applied on the secondary transmission in order to adhere to the primary’s interference constraint. It is noted that the total SE increases with the number of secondary users in the full frequency reuse approach. Moreover, the Exclusion Zone (EZ) principle is applied to exploit the regions in which the secondary system can operate without causing harmful interference to the primary system. It is shown that the EZ radius of 8.5 dB is sufficient to protect the primary system perfectly with a significant gain in SE. Finally, it is shown that power control and the EZ methods are suitable for lower and higher values of secondary aggregated interference respectively. [less ▲]

Detailed reference viewed: 311 (30 UL)