![]() Badkas, Apurva ![]() ![]() ![]() in International journal of molecular sciences (2023), 24(4), Glioblastoma multiforme (GBM), a grade IV glioma, is a challenging disease for patients and clinicians, with an extremely poor prognosis. These tumours manifest a high molecular heterogeneity, with ... [more ▼] Glioblastoma multiforme (GBM), a grade IV glioma, is a challenging disease for patients and clinicians, with an extremely poor prognosis. These tumours manifest a high molecular heterogeneity, with limited therapeutic options for patients. Since GBM is a rare disease, sufficient statistically strong evidence is often not available to explore the roles of lesser-known GBM proteins. We present a network-based approach using centrality measures to explore some key, topologically strategic proteins for the analysis of GBM. Since network-based analyses are sensitive to changes in network topology, we analysed nine different GBM networks, and show that small but well-curated networks consistently highlight a set of proteins, indicating their likely involvement in the disease. We propose 18 novel candidates which, based on differential expression, mutation analysis, and survival analysis, indicate that they may play a role in GBM progression. These should be investigated further for their functional roles in GBM, their clinical prognostic relevance, and their potential as therapeutic targets. [less ▲] Detailed reference viewed: 37 (1 UL)![]() ; ; Halder, Rashi ![]() in International journal of molecular sciences (2022), 23(23), Specialized pro-resolving mediators (SPMs) are multifunctional lipid mediators that participate in the resolution of inflammation. We have recently described that oral epithelial cells (OECs) express ... [more ▼] Specialized pro-resolving mediators (SPMs) are multifunctional lipid mediators that participate in the resolution of inflammation. We have recently described that oral epithelial cells (OECs) express receptors of the SPM resolvin RvD1(n-3 DPA) and that cultured OECs respond to RvD1(n-3 DPA) addition by intracellular calcium release, nuclear receptor translocation and transcription of genes coding for antimicrobial peptides. The aim of the present study was to assess the functional outcome of RvD1(n-3 DPA)-signaling in OECs under inflammatory conditions. To this end, we performed transcriptomic analyses of TNF-α-stimulated cells that were subsequently treated with RvD1(n-3 DPA) and found significant downregulation of pro-inflammatory nuclear factor kappa B (NF-κB) target genes. Further bioinformatics analyses showed that RvD1(n-3 DPA) inhibited the expression of several genes involved in the NF-κB activation pathway. Confocal microscopy revealed that addition of RvD1(n-3 DPA) to OECs reversed TNF-α-induced nuclear translocation of NF-κB p65. Co-treatment of the cells with the exportin 1 inhibitor leptomycin B indicated that RvD1(n-3 DPA) increases nuclear export of p65. Taken together, our observations suggest that SPMs also have the potential to be used as a therapeutic aid when inflammation is established. [less ▲] Detailed reference viewed: 46 (0 UL)![]() Zhou, Yang ![]() ![]() ![]() in International Journal of Molecular Sciences (2021) S100A9, a Ca2+-binding protein, is tightly associated to neutrophil pro-inflammatory functions when forming a heterodimer with its S100A8 partner. Upon secretion into the extracellular environment, these ... [more ▼] S100A9, a Ca2+-binding protein, is tightly associated to neutrophil pro-inflammatory functions when forming a heterodimer with its S100A8 partner. Upon secretion into the extracellular environment, these proteins behave like damage-associated molecular pattern molecules, which actively participate in the amplification of the inflammation process by recruitment and activation of pro-inflammatory cells. Intracellular functions have also been attributed to the S100A8/A9 complex, notably its ability to regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. However, the complete functional spectrum of S100A8/A9 at the intracellular level is far from being understood. In this context, we here investigated the possibility that the absence of intracellular S100A8/A9 is involved in cytokine secretion. To overcome the difficulty of genetically modifying neutrophils, we used murine neutrophils derived from wild-type and S100A9-/- Hoxb8 immortalized myeloid progenitors. After confirming that differentiated Hoxb8 neutrophil-like cells are a suitable model to study neutrophil functions, our data show that absence of S100A8/A9 led to a dysregulation of cytokine secretion after lipopolysaccharide (LPS) stimulation. Furthermore, we demonstrate that S100A8/A9-induced cytokine secretion was regulated by the nuclear factor kappa B (NF-κB) pathway. These results were confirmed in human differentiated HL-60 cells, in which S100A9 was inhibited by shRNAs. Finally, our results indicate that the degranulation process could be involved in the regulation of cytokine secretion by S100A8/A9. [less ▲] Detailed reference viewed: 115 (13 UL)![]() Badanjak, Katja ![]() ![]() ![]() in International journal of molecular sciences (2021), 22(9), With the world's population ageing, the incidence of Parkinson's disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There ... [more ▼] With the world's population ageing, the incidence of Parkinson's disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD. [less ▲] Detailed reference viewed: 81 (13 UL)![]() ; ; et al in International journal of molecular sciences (2021), 22(7), Myoclonus-dystonia (DYT-SGCE, formerly DYT11) is characterized by alcohol-sensitive, myoclonic-like appearance of fast dystonic movements. It is caused by mutations in the SGCE gene encoding ε-sarcoglycan ... [more ▼] Myoclonus-dystonia (DYT-SGCE, formerly DYT11) is characterized by alcohol-sensitive, myoclonic-like appearance of fast dystonic movements. It is caused by mutations in the SGCE gene encoding ε-sarcoglycan leading to a dysfunction of this transmembrane protein, alterations in the cerebello-thalamic pathway and impaired striatal plasticity. To elucidate underlying pathogenic mechanisms, we investigated induced pluripotent stem cell (iPSC)-derived striatal medium spiny neurons (MSNs) from two myoclonus-dystonia patients carrying a heterozygous mutation in the SGCE gene (c.298T>G and c.304C>T with protein changes W100G and R102X) in comparison to two matched healthy control lines. Calcium imaging showed significantly elevated basal intracellular Ca(2+) content and lower frequency of spontaneous Ca(2+) signals in SGCE MSNs. Blocking of voltage-gated Ca(2+) channels by verapamil was less efficient in suppressing KCl-induced Ca(2+) peaks of SGCE MSNs. Ca(2+) amplitudes upon glycine and acetylcholine applications were increased in SGCE MSNs, but not after GABA or glutamate applications. Expression of voltage-gated Ca(2+) channels and most ionotropic receptor subunits was not altered. SGCE MSNs showed significantly reduced GABAergic synaptic density. Whole-cell patch-clamp recordings displayed elevated amplitudes of miniature postsynaptic currents and action potentials in SGCE MSNs. Our data contribute to a better understanding of the pathophysiology and the development of novel therapeutic strategies for myoclonus-dystonia. [less ▲] Detailed reference viewed: 33 (0 UL)![]() ; ; et al in International Journal of Molecular Sciences (2020), 21(18), 6513 Parkinson’s disease (PD) is a complex and heterogeneous disorder involving multiple genetic and environmental influences. Although a wide range of PD risk factors and clinical markers for the symptomatic ... [more ▼] Parkinson’s disease (PD) is a complex and heterogeneous disorder involving multiple genetic and environmental influences. Although a wide range of PD risk factors and clinical markers for the symptomatic motor stage of the disease have been identified, there are still no reliable biomarkers available for the early pre-motor phase of PD and for predicting disease progression. High-throughput RNA-based biomarker profiling and modeling may provide a means to exploit the joint information content from a multitude of markers to derive diagnostic and prognostic signatures. In the field of PD biomarker research, currently, no clinically validated RNA-based biomarker models are available, but previous studies reported several significantly disease-associated changes in RNA abundances and activities in multiple human tissues and body fluids. Here, we review the current knowledge of the regulation and function of non-coding RNAs in PD, focusing on microRNAs, long non-coding RNAs, and circular RNAs. Since there is growing evidence for functional interactions between the heart and the brain, we discuss the benefits of studying the role of non-coding RNAs in organ interactions when deciphering the complex regulatory networks involved in PD progression. We finally review important concepts of harmonization and curation of high throughput datasets, and we discuss the potential of systems biomedicine to derive and evaluate RNA biomarker signatures from high-throughput expression data. [less ▲] Detailed reference viewed: 128 (1 UL)![]() ; Margue, Christiane ![]() ![]() in International Journal of Molecular Sciences (2020) Hypoxia is a common hallmark of solid tumors and is associated with aggressiveness, metastasis and poor outcome. Cancer cells under hypoxia undergo changes in metabolism and there is an intense crosstalk ... [more ▼] Hypoxia is a common hallmark of solid tumors and is associated with aggressiveness, metastasis and poor outcome. Cancer cells under hypoxia undergo changes in metabolism and there is an intense crosstalk between cancer cells and cells from the tumor microenvironment. This cross talk is facilitated by small extracellular vesicles (sEVs; diameter between 30 and 200 nm), including exosomes and microvesicles, which carry a cargo of proteins, mRNA, ncRNA and other biological molecules. Hypoxia is known to increase secretion of sEVs and has an impact on the composition of the cargo. This sEV-mediated crosstalk ultimately leads to various biological effects in the proximal tumor microenvironment but also at distant, future metastatic sites. In this review, we discuss the changes induced by hypoxia on sEV secretion and their cargo as well as their effects on the behaviour and metabolism of cancer cells, the tumor microenvironment and metastatic events. [less ▲] Detailed reference viewed: 98 (6 UL)![]() Turner, Jonathan ![]() ![]() ![]() in International Journal of Molecular Sciences (2020), 21 The role of twins in research is evolving as we move further into the post-genomic era. With the re-definition of what a gene is, it is becoming clear that biological family members who share a specific ... [more ▼] The role of twins in research is evolving as we move further into the post-genomic era. With the re-definition of what a gene is, it is becoming clear that biological family members who share a specific genetic variant may well not have a similar risk for future disease. This has somewhat invalidated the prior rationale for twin studies. Case co-twin study designs, however, are slowly emerging as the ideal tool to identify both environmentally induced epigenetic marks and epigenetic disease-associated processes. Here, we propose that twin lives are not as identical as commonly assumed and that the case co-twin study design can be used to investigate the effects of the adult social environment. We present the elements in the (social) environment that are likely to affect the epigenome and measures in which twins may diverge. Using data from the German TwinLife registry, we confirm divergence in both the events that occur and the salience for the individual start as early as age 11. Case co-twin studies allow for the exploitation of these divergences, permitting the investigation of the role of not only the adult social environment, but also the salience of an event or environment for the individual, in determining lifelong health trajectories. In cases like social adversity where it is clearly not possible to perform a randomised-controlled trial, we propose that the case cotwin study design is the most rigorous manner with which to investigate epigenetic mechanisms encoding environmental exposure. The role of the case co-twin design will continue to evolve, as we argue that it will permit causal inference from observational data. [less ▲] Detailed reference viewed: 96 (1 UL)![]() ; ; Bueb, Jean-Luc ![]() in International journal of molecular sciences (2019), 20(22), The release of cytokines by neutrophils constitutes an essential process in the development of inflammation by recruiting and activating additional cells. Neutrophils are also able to secrete a complex of ... [more ▼] The release of cytokines by neutrophils constitutes an essential process in the development of inflammation by recruiting and activating additional cells. Neutrophils are also able to secrete a complex of S100A8 and S100A9 proteins (S100A8/A9), which can amplify the general inflammatory state of the host and is involved in the pathogenesis of several chronic inflammatory diseases, such as rheumatoid arthritis (RA). S100A8/A9 have received renewed attention due to their susceptibility to several function-altering post-translational modifications. In that context, it has been recently demonstrated that only the phosphorylated form of S100A8/A9 (S100A8/A9-P) is able to induce the secretion of several cytokines in neutrophils. Here, we investigate the mechanism by which this post-translational modification of S100A8/A9 can regulate the extracellular activity of the protein complex and its impact on the inflammatory functions of neutrophils. We found that S100A8/A9-P are present in large amounts in the synovial fluids from RA patients, highlighting the importance of this form of S100A8/A9 complex in the inflammation process. Using miRNA-sequencing on S100A8/A9-P-stimulated differentiated HL-60 cells, we identified a dysregulation of miR-146a-5p and miR-155-5p expression through TRL4 signaling pathways. Our data reveal that overexpression of these miRNAs in neutrophil-like cells reduces S100A8/A9-P-mediated secretion of pro-inflammatory cytokines. [less ▲] Detailed reference viewed: 113 (7 UL)![]() ; ; et al in International Journal of Molecular Sciences (2016) The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics ... [more ▼] The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v) mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v)), with and without the addition of 0.1% (v/v) formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem) and 57% (ear) of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone. [less ▲] Detailed reference viewed: 305 (5 UL)![]() ; ; Gebel, Stephan ![]() in International Journal of Molecular Sciences (2015), 16(12), 29179-29206 Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data ... [more ▼] Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies-data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European Commission (EC). [less ▲] Detailed reference viewed: 262 (8 UL)![]() ; ; et al in International Journal of Molecular Sciences (2011), 12(8), 4850-60 The paper presents a model for simulating the protein folding process in silico. The two-step model (which consists of the early stage-ES and the late stage-LS) is verified using two proteins, one of ... [more ▼] The paper presents a model for simulating the protein folding process in silico. The two-step model (which consists of the early stage-ES and the late stage-LS) is verified using two proteins, one of which is treated (according to experimental observations) as the early stage and the second as an example of the LS step. The early stage is based solely on backbone structural preferences, while the LS model takes into account the water environment, treated as an external hydrophobic force field and represented by a 3D Gauss function. The characteristics of 1ZTR (the ES intermediate, as compared with 1ENH, which is the LS intermediate) confirm the link between the gradual disappearance of ES characteristics in LS structural forms and the simultaneous emergence of LS properties in the 1ENH protein. Positive verification of ES and LS characteristics in these two proteins (1ZTR and 1ENH respectively) suggest potential applicability of the presented model to in silico protein folding simulations. [less ▲] Detailed reference viewed: 115 (0 UL) |
||