Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

Localization Performance of 1-Bit Passive Radars in NB-IoT Applications using Multivariate Polynomial Optimization Sedighi, Saeid ; ; Mysore Rama Rao, Bhavani Shankar et al in IEEE Transactions on Signal Processing (2021), 69 Several Internet-of-Things (IoT) applications provide location-based services, wherein it is critical to obtain accurate position estimates by aggregating information from individual sensors. In the ... [more ▼] Several Internet-of-Things (IoT) applications provide location-based services, wherein it is critical to obtain accurate position estimates by aggregating information from individual sensors. In the recently proposed narrowband IoT (NB-IoT) standard, which trades off bandwidth to gain wide coverage, the location estimation is compounded by the low sampling rate receivers and limited-capacity links. We address both of these NB-IoT drawbacks in the framework of passive sensing devices that receive signals from the target-of-interest. We consider the limiting case where each node receiver employs one-bit analog-to-digital-converters and propose a novel low-complexity nodal delay estimation method using constrained-weighted least squares minimization. To support the low-capacity links to the fusion center (FC), the range estimates obtained at individual sensors are then converted to one-bit data. At the FC, we propose target localization with the aggregated one-bit range vector using both optimal and sub-optimal techniques. The computationally expensive former approach is based on Lasserre's method for multivariate polynomial optimization while the latter employs our less complex iterative joint r\textit{an}ge-\textit{tar}get location \textit{es}timation (ANTARES) algorithm. Our overall one-bit framework not only complements the low NB-IoT bandwidth but also supports the design goal of inexpensive NB-IoT location sensing. Numerical experiments demonstrate feasibility of the proposed one-bit approach with a 0.6\% increase in the normalized localization error for the small set of 20-60 nodes over the full-precision case. When the number of nodes is sufficiently large (>80), the one-bit methods yield the same performance as the full precision. [less ▲] Detailed reference viewed: 48 (2 UL)Spatial- and Range- ISLR Trade-off in MIMO Radar Systems via Waveform Design Raei, Ehsan ; Alaeekerahroodi, Mohammad ; Mysore Rama Rao, Bhavani Shankar in IEEE Transactions on Signal Processing (2021) This paper aims to design a set of transmit waveforms in cognitive colocated Multi-Input Multi-Output (MIMO) radar systems considering the simultaneous minimization of the contradictory objectives of ... [more ▼] This paper aims to design a set of transmit waveforms in cognitive colocated Multi-Input Multi-Output (MIMO) radar systems considering the simultaneous minimization of the contradictory objectives of spatial- and the range- Integrated Sidelobe Level Ratio (ISLR). The design problem is formulated as a bi-objective Pareto optimization under practical constraints on the waveforms, namely total transmit power, peak-to-average-power ratio (PAR), constant modulus, and discrete phase alphabet. A Coordinate Descent (CD) based approach is proposed where the solution in each iteration is handled through novel methodologies designed in the paper. The simultaneous optimization leads to a trade-off between the two ISLRs and the simulation results illustrate significantly improved trade-off offered by the proposed methodologies. [less ▲] Detailed reference viewed: 96 (21 UL)Efficient Algorithms for Constant-Modulus Analog Beamforming Arora, Aakash ; ; Mysore Rama Rao, Bhavani Shankar et al in IEEE Transactions on Signal Processing (2021) The use of a large-scale antenna array (LSAA) has become an important characteristic of multi-antenna communication systems to achieve beamforming gains. For example, in millimeter wave (mmWave) systems ... [more ▼] The use of a large-scale antenna array (LSAA) has become an important characteristic of multi-antenna communication systems to achieve beamforming gains. For example, in millimeter wave (mmWave) systems, an LSAA is employed at the transmitter/receiver end to combat severe propagation losses. In such applications, each antenna element has to be driven by a radio frequency (RF) chain for the implementation of fully-digital beamformers. This strict requirement significantly increases the hardware cost, complexity, and power consumption. Therefore, constant-modulus analog beamforming (CMAB) becomes a viable solution. In this paper, we consider the scaled analog beamforming (SAB) or CMAB architecture and design the system parameters by solving the beampattern matching problem. We consider two beampattern matching problems. In the first case, both the magnitude and phase of the beampattern are matched to the given desired beampattern whereas in the second case, only the magnitude of the beampattern is matched. Both the beampattern matching problems are cast as a variant of the constant-modulus least-squares problem. We provide efficient algorithms based on the alternating majorization-minimization (AMM) framework that combines the alternating minimization and the MM frameworks and the conventional-cyclic coordinate descent (C-CCD) framework to solve the problem in each case. We also propose algorithms based on a new modified-CCD (M-CCD) based approach. For all the developed algorithms we prove convergence to a Karush-Kuhn-Tucker (KKT) point (or a stationary point). Numerical results demonstrate that the proposed algorithms converge faster than state-of-the-art solutions. Among all the algorithms, the M-CCD-based algorithms have faster convergence when evaluated in terms of the number of iterations and the AMM-based algorithms offer lower complexity. [less ▲] Detailed reference viewed: 53 (4 UL)Generalized Multiplexed Waveform Design Framework for Cost-Optimized MIMO Radar ; ; Ottersten, Björn in IEEE Transactions on Signal Processing (2020), 69 Cost-optimization through the minimization of hardware and processing costs with minimal loss in performance is an interesting design paradigm in evolving and emerging Multiple-Input-Multiple-Output (MIMO ... [more ▼] Cost-optimization through the minimization of hardware and processing costs with minimal loss in performance is an interesting design paradigm in evolving and emerging Multiple-Input-Multiple-Output (MIMO) radar systems. This optimization is a challenging task due to the increasing Radio Frequency (RF) hardware complexity as well as the signal design algorithm complexity in applications requiring high angular resolution. Towards addressing these, the paper proposes a low-complexity signal design framework, which incorporates a generalized time multiplex scheme for reducing the RF hardware complexity with a subsequent discrete phase modulation. The scheme further aims at achieving simultaneous transmit beamforming and maximum virtual MIMO aperture to enable better target detection and discrimination performance. Furthermore, the paper proposes a low-complexity signal design scheme for beampattern matching in the aforementioned setting. The conducted performance evaluation indicates that the listed design objectives are met. [less ▲] Detailed reference viewed: 52 (1 UL)Robust SINR-Constrained Symbol-Level Multiuser Precoding With Imperfect Channel Knowledge Haqiqatnejad, Alireza ; Kayhan, Farbod ; Ottersten, Björn in IEEE Transactions on Signal Processing (2020), 68(1), 1837-1852 In this paper, we address robust design of symbol-level precoding (SLP) for the downlink of multiuser multiple-input single-output wireless channels, when imperfect channel state information (CSI) is ... [more ▼] In this paper, we address robust design of symbol-level precoding (SLP) for the downlink of multiuser multiple-input single-output wireless channels, when imperfect channel state information (CSI) is available at the transmitter. In particular, we consider a well known model for the CSI imperfection, namely, stochastic Gaussian-distributed uncertainty. Our design objective is to minimize the total (per-symbol) transmission power subject to constructive interference (CI) constraints as well as the users’ quality-of-service requirements in terms of signal-to-interference-plus-noise ratio. Assuming stochastic channel uncertainties, we first define probabilistic CI constraints in order to achieve robustness to statistically known CSI errors. Since these probabilistic constraints are difficult to handle, we resort to their convex approximations in the form of tractable (deterministic) robust constraints. Three convex approximations are obtained based on different conservatism levels, among which one is introduced as a benchmark for comparison. We show that each of our proposed approximations is tighter than the other under specific robustness settings, while both of them always outperform the benchmark. Using the proposed CI constraints, we formulate the robust SLP optimization problem as a second-order cone program. Extensive simulation results are provided to validate our analytic discussions and to make comparisons with conventional block-level robust precoding schemes. We show that the robust design of symbol-level precoder leads to an improved performance in terms of energy efficiency at the cost of increasing the computational complexity by an order of the number of users in the large system limit, compared to its non-robust counterpart. [less ▲] Detailed reference viewed: 119 (21 UL)Hybrid Transceivers Design for Large-Scale Antenna Arrays Using Majorization-Minimization Algorithms Arora, Aakash ; Tsinos, Christos ; Shankar, Bhavani et al in IEEE Transactions on Signal Processing (2020), 68 Detailed reference viewed: 340 (121 UL)Inexact Block Coordinate Descent Algorithms for Nonsmooth Nonconvex Optimization ; ; et al in IEEE Transactions on Signal Processing (2019) In this paper, we propose an inexact block coordinate descent algorithm for large-scale nonsmooth nonconvex optimization problems. At each iteration, a particular block variable is selected and updated by ... [more ▼] In this paper, we propose an inexact block coordinate descent algorithm for large-scale nonsmooth nonconvex optimization problems. At each iteration, a particular block variable is selected and updated by solving the original optimization problem with respect to that block variable inexactly. More precisely, a local approximation of the original optimization problem is solved. The proposed algorithm has several attractive features, namely, i) high flexibility, as the approximation function only needs to be strictly convex and it does not have to be a global upper bound of the original function; ii) fast convergence, as the approximation function can be designed to exploit the problem structure at hand and the stepsize is calculated by the line search; iii) low complexity, as the approximation subproblems are much easier to solve and the line search scheme is carried out over a properly constructed differentiable function; iv) guaranteed convergence of a subsequence to a stationary point, even when the objective function does not have a Lipschitz continuous gradient. Interestingly, when the approximation subproblem is solved by a descent algorithm, convergence of a subsequence to a stationary point is still guaranteed even if the approximation subproblem is solved inexactly by terminating the descent algorithm after a finite number of iterations. These features make the proposed algorithm suitable for large-scale problems where the dimension exceeds the memory and/or the processing capability of the existing hardware. These features are also illustrated by several applications in signal processing and machine learning, for instance, network anomaly detection and phase retrieval. [less ▲] Detailed reference viewed: 83 (4 UL)An Asymptotically Efficient Weighted Least Squares Estimator for Co-Array-Based DoA Estimation Sedighi, Saeid ; Shankar, Bhavani ; Ottersten, Björn in IEEE Transactions on Signal Processing (2019) Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing thanks to its capability of providing enhanced degrees ... [more ▼] Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing thanks to its capability of providing enhanced degrees of freedom. Although the literature presents a variety of estimators in this context, none of them are proven to be statistically efficient. This work introduces a novel estimator for the co-array-based DoA estimation employing the Weighted Least Squares (WLS) method. An analytical expression for the large sample performance of the proposed estimator is derived. Then, an optimal weighting is obtained so that the asymptotic performance of the proposed WLS estimator coincides with the Cram\'{e}r-Rao Bound (CRB), thereby ensuring asymptotic statistical efficiency of resulting WLS estimator. This implies that the proposed WLS estimator has a significantly better performance compared to existing methods. Numerical simulations are provided to validate the analytical derivations and corroborate the improved performance. [less ▲] Detailed reference viewed: 261 (14 UL)Designing Sets of Binary Sequences for MIMO Radar Systems Alaee-Kerahroodi, Mohammad ; ; in IEEE Transactions on Signal Processing (2019), 67(13), 3347--3360 Detailed reference viewed: 55 (2 UL)Energy efficiency optimization in MIMO interference channels: A successive pseudoconvex approximation approach Yang, Yang ; ; Chatzinotas, Symeon et al in IEEE Transactions on Signal Processing (2019) Detailed reference viewed: 587 (70 UL)Symbol-Level Precoding Design Based on Distance Preserving Constructive Interference Regions Haqiqatnejad, Alireza ; Kayhan, Farbod ; Ottersten, Björn in IEEE Transactions on Signal Processing (2018), 66(22), 5817-5832 In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic two-dimensional constellations ... [more ▼] In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic two-dimensional constellations with any shape and size, and confine ourselves to one of the main categories of constructive interference regions (CIR), namely, distance preserving CIR (DPCIR). We provide a comprehensive study of DPCIRs and derive several properties for these regions. Using these properties, we first show that any signal in a given DPCIR has a norm greater than or equal to the norm of the corresponding constellation point if and only if the convex hull of the constellation contains the origin. It is followed by proving that the power of the noise-free received signal in a DPCIR is a monotonic strictly increasing function of two parameters relating to the infinite Voronoi edges. Using the convex description of DPCIRs and their characteristics, we formulate two design problems, namely, the SLP power minimization with signal-to-interference-plus-noise ratio (SINR) constraints, and the SLP SINR balancing problem under max-min fairness criterion. The SLP power minimization based on DPCIRs can straightforwardly be written as a quadratic programming (QP). We derive a simplified reformulation of this problem which is less computationally complex. The SLP max-min SINR, however, is non-convex in its original form, and hence difficult to tackle. We propose alternative optimization approaches, including semidefinite programming (SDP) formulation and block coordinate descent (BCD) optimization. We discuss and evaluate the loss due to the proposed alternative methods through extensive simulation results. [less ▲] Detailed reference viewed: 176 (36 UL)Symbol-Level Precoding for the Nonlinear Multiuser MISO Downlink Channel Spano, Danilo ; ; Chatzinotas, Symeon et al in IEEE Transactions on Signal Processing (2018), 66(5), 1331-1345 This paper investigates the problem of the interference among multiple simultaneous transmissions in the downlink channel of a multiantenna wireless system. A symbol-level precoding scheme is considered ... [more ▼] This paper investigates the problem of the interference among multiple simultaneous transmissions in the downlink channel of a multiantenna wireless system. A symbol-level precoding scheme is considered, in order to exploit the multiuser interference and transform it into useful power at the receiver side, through a joint utilization of the data information and the channel state information. In this context, this paper presents novel strategies that exploit the potential of symbol-level precoding to control the per-antenna instantaneous transmit power. In particular, the power peaks among the transmitting antennas and the instantaneous power imbalances across the different transmitted streams are minimized. These objectives are particularly relevant with respect to the nonlinear amplitude and phase distortions induced by the per-antenna amplifiers, which are important sources of performance degradation in practical systems. More specifically, this paper proposes two different symbol-level precoding approaches. The first approach performs a weighted per-antenna power minimization, under quality-of-service constraints and under a lower bound constraint on the per-antenna transmit power. The second strategy performs a minimization of the spatial peak-to-average power ratio, evaluated among the transmitting antennas. Numerical results are presented in a comparative fashion to show the effectiveness of the proposed techniques, which outperform the state-of-the-art symbol-level precoding schemes in terms of spatial peak-to-average power ratio, spatial dynamic range, and symbol error rate over nonlinear channels. [less ▲] Detailed reference viewed: 98 (4 UL)Energy-Efficient Multicell Multigroup Multicasting With Joint Beamforming and Antenna Selection ; ; et al in IEEE Transactions on Signal Processing (2018) Detailed reference viewed: 110 (7 UL)Symbol-level Precoding for the Non-linear Multiuser MISO Downlink Channel Spano, Danilo ; ; Chatzinotas, Symeon et al in IEEE Transactions on Signal Processing (2017) This paper investigates the problem of the interference among multiple simultaneous transmissions in the downlink channel of a multi-antenna wireless system. A symbol-level precoding scheme is considered ... [more ▼] This paper investigates the problem of the interference among multiple simultaneous transmissions in the downlink channel of a multi-antenna wireless system. A symbol-level precoding scheme is considered, in order to exploit the multi-user interference and transform it into useful power at the receiver side, through a joint utilization of the data information and the channel state information. In this context, this paper presents novel strategies which exploit the potential of symbol-level precoding to control the per-antenna instantaneous transmit power. In particular, the power peaks amongst the transmitting antennas and the instantaneous power imbalances across the different transmitted streams are minimized. These objectives are particularly relevant with respect to the non-linear amplitude and phase distortions induced by the per-antenna amplifiers, which are important sources of performance degradation in practical systems. More specifically, this work proposes two different symbol-level precoding approaches. A first approach performs a weighted per-antenna power minimization, under Quality-of-Service constraints and under a lower bound constraint on the per-antenna transmit power. A second strategy performs a minimization of the spatial peak-to-average power ratio, evaluated amongst the transmitting antennas. Numerical results are presented in a comparative fashion to show the effectiveness of the proposed techniques, which outperform the state of the art symbol-level precoding schemes in terms of spatial peak-to-average power ratio, spatial dynamic range, and symbol-error-rate over non-linear channels. [less ▲] Detailed reference viewed: 194 (15 UL)A unified successive pseudoconvex approximation framework Yang, Yang ; in IEEE Transactions on Signal Processing (2017), 65(13), 3313-3328 Detailed reference viewed: 282 (20 UL)Codebook-Based Hybrid Precoding for Millimeter Wave Multiuser Systems ; ; et al in IEEE Transactions on Signal Processing (2017), 65(20), 5289-5304 Detailed reference viewed: 144 (3 UL)Adaptive Cloud Radio Access Networks: Compression and Optimization Vu, Thang Xuan ; ; et al in IEEE Transactions on Signal Processing (2017), 65(1), 228-241 Future mobile networks are facing with exponential data growth due to the proliferation of diverse mobile equipment and data-hungry applications. Among promising technology candidates to overcome this ... [more ▼] Future mobile networks are facing with exponential data growth due to the proliferation of diverse mobile equipment and data-hungry applications. Among promising technology candidates to overcome this problem, cloud radio access network (CRAN) has received much attention. In this work, we investigate the design of fronthaul in C-RAN uplink by focusing on the compression and optimization in fronthaul uplinks based on the statistics of wireless fading channels. First, we derive the system block error rate (BLER) under Rayleigh fading channels. In particular, upper and lower bounds of the BLER union bound are obtained in closed-form. From these bounds, we gain insight in terms of diversity order and limits of the BLER. Next, we propose adaptive compression schemes to minimize the fronthaul transmission rate subject to a BLER constraint. Furthermore, a fronthaul rate allocation is proposed to minimize the system BLER. It is shown that the uniform rate allocation approaches the optimal scheme as the total fronthauls’ bandwidth increases. Lastly, numerical results are presented to demonstrate the effectiveness of our proposed optimizations. [less ▲] Detailed reference viewed: 136 (14 UL)Distributed Optimization for Coordinated Multi-cell Multigroup Multicast Beamforming: Power Minimization and SINR Balancing ; ; et al in IEEE Transactions on Signal Processing (2017) Detailed reference viewed: 50 (3 UL)Per-antenna constant envelope precoding and antenna subset selection: A geometric approach ; ; et al in IEEE Transactions on Signal Processing (2016), 64(23), 6089-6104 Constant envelope (CE) precoding can efficiently control the peak-to-average power ratio (PAPR) and improve the power efficiency of power amplifiers in large-scale antenna array systems. Antenna subset ... [more ▼] Constant envelope (CE) precoding can efficiently control the peak-to-average power ratio (PAPR) and improve the power efficiency of power amplifiers in large-scale antenna array systems. Antenna subset selection (ASS), combined with CE precoding, can further improve power efficiency by using a part of antennas to combine the desired signal. However, due to the inherent nonlinearity, the joint optimization of CE precoding and ASS is very challenging and satisfactory solutions are yet not available. In this paper, we present new methods for CE precoding and ASS optimization from a geometric perspective. First, we show the equivalence between the CE precoder design and a polygon construction problem in the complex plane, thus transforming the algebraic problem into a geometric problem. Aiming to minimize the computational complexity, we further transform the CE precoder design into a triangle construction problem, and propose a novel algorithm to achieve the optimal CE precoder with only linear complexity in the number of used antennas. Then, we investigate the joint optimization of ASS and CE precoding to minimize the total transmit power while satisfying the QoS requirement. Based on the geometric interpretation, we develop an efficient ASS algorithm, which, using only addition and comparison operations, is guaranteed to find the globally optimal solution and provides robustness to channel uncertainty. The complexity of the proposed ASS algorithm is at most quadratic in the number of antennas in the worst case. The optimality and superiority of the proposed geometric methods are demonstrated via numerical results. [less ▲] Detailed reference viewed: 172 (1 UL)A parallel decomposition method for nonconvex stochastic multi-agent optimization problems Yang, Yang ; ; et al in IEEE Transactions on Signal Processing (2016), 64(11), 2949-2964 Detailed reference viewed: 185 (7 UL) |
||