![]() Boualouache, Abdelwahab ![]() ![]() in IEEE Communications Surveys and Tutorials (2022) Advances in Vehicle-to-Everything (V2X) technology and onboard sensors have significantly accelerated deploying Connected and Automated Vehicles (CAVs). Integrating V2X with 5G has enabled Ultra-Reliable ... [more ▼] Advances in Vehicle-to-Everything (V2X) technology and onboard sensors have significantly accelerated deploying Connected and Automated Vehicles (CAVs). Integrating V2X with 5G has enabled Ultra-Reliable Low Latency Communications (URLLC) to CAVs. However, while communication performance has been enhanced, security and privacy issues have increased. Attacks have become more aggressive, and attackers have become more strategic. Public Key Infrastructure (PKI) proposed by standardization bodies cannot solely defend against these attacks. Thus, in complementary of that, sophisticated systems should be designed to detect such attacks and attackers. Machine Learning (ML) has recently emerged as a key enabler to secure future roads. Various V2X Misbehavior Detection Systems (MDSs) have adopted this paradigm. However, analyzing these systems is a research gap, and developing effective ML-based MDSs is still an open issue. To this end, this paper comprehensively surveys and classifies ML-based MDSs as well as discusses and analyses them from security and ML perspectives. It also provides some learned lessons and recommendations for guiding the development, validation, and deployment of ML-based MDSs. Finally, this paper highlighted open research and standardization issues with some future directions. [less ▲] Detailed reference viewed: 29 (17 UL)![]() Kodheli, Oltjon ![]() ![]() ![]() in IEEE Communications Surveys and Tutorials (2021), 23(1), 70-109 Satellite communications (SatComs) have recently entered a period of renewed interest motivated by technological advances and nurtured through private investment and ventures. The present survey aims at ... [more ▼] Satellite communications (SatComs) have recently entered a period of renewed interest motivated by technological advances and nurtured through private investment and ventures. The present survey aims at capturing the state of the art in SatComs, while highlighting the most promising open research topics. Firstly, the main innovation drivers are motivated, such as new constellation types, on-board processing capabilities, nonterrestrial networks and space-based data collection/processing. Secondly, the most promising applications are described i.e. 5G integration, space communications, Earth observation, aeronautical and maritime tracking and communication. Subsequently, an in-depth literature review is provided across five axes: i) system aspects, ii) air interface, iii) medium access, iv) networking, v) testbeds & prototyping. Finally, a number of future challenges and the respective open research topics are described. [less ▲] Detailed reference viewed: 247 (42 UL)![]() ; Spano, Danilo ![]() ![]() in IEEE Communications Surveys and Tutorials (2020), 22(2), 796-839 Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by ... [more ▼] Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area. [less ▲] Detailed reference viewed: 130 (16 UL)![]() Sharma, Shree Krishna ![]() in IEEE Communications Surveys and Tutorials (2019) The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense ... [more ▼] The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as enhanced Mobile Broadband (eMBB), massive Machine Type Communications (mMTC) and Ultra-Reliable and Low Latency Communications (URLLC), the mMTC brings the unique technical challenge of supporting a huge number of MTC devices in cellular networks, which is the main focus of this paper. The related challenges include Quality of Service (QoS) provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and Narrowband IoT (NB-IoT). Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenario along with the recent advances towards enhancing its learning performance and convergence. Finally, we discuss some open research challenges and promising future research directions. [less ▲] Detailed reference viewed: 196 (9 UL)![]() Capponi, Andrea ![]() ![]() in IEEE Communications Surveys and Tutorials (2019), 21(3, thirdquarter 2019), 2419-2465 Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices ... [more ▼] Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices of a large number of participants or a crowd. Smartphones, tablets, and wearable devices are deployed widely and already equipped with a rich set of sensors, making them an excellent source of information. Mobility and intelligence of humans guarantee higher coverage and better context awareness if compared to traditional sensor networks. At the same time, individuals may be reluctant to share data for privacy concerns. For this reason, MCS frameworks are specifically designed to include incentive mechanisms and address privacy concerns. Despite the growing interest in the research community, MCS solutions need a deeper investigation and categorization on many aspects that span from sensing and communication to system management and data storage. In this paper, we take the research on MCS a step further by presenting a survey on existing works in the domain and propose a detailed taxonomy to shed light on the current landscape and classify applications, methodologies, and architectures. Our objective is not only to analyze and consolidate past research but also to outline potential future research directions and synergies with other research areas. [less ▲] Detailed reference viewed: 261 (16 UL)![]() ; Spano, Danilo ![]() in IEEE Communications Surveys and Tutorials (2018) Precoding has been conventionally considered as an effective means of mitigating or exploiting the interference in the multiantenna downlink channel, where multiple users are simultaneously served with ... [more ▼] Precoding has been conventionally considered as an effective means of mitigating or exploiting the interference in the multiantenna downlink channel, where multiple users are simultaneously served with independent information over the same channel resources. The early works in this area were focused on transmitting an individual information stream to each user by constructing weighted linear combinations of symbol blocks (codewords). However, more recent works have moved beyond this traditional view by: i) transmitting distinct data streams to groups of users and ii) applying precoding on a symbol-per-symbol basis. In this context, the current survey presents a unified view and classification of precoding techniques with respect to two main axes: i) the switching rate of the precoding weights, leading to the classes of block-level and symbol-level precoding, ii) the number of users that each stream is addressed to, hence unicast, multicast, and broadcast precoding. Furthermore, the classified techniques are compared through representative numerical results to demonstrate their relative performance and uncover fundamental insights. Finally, a list of open theoretical problems and practical challenges are presented to inspire further research in this area. [less ▲] Detailed reference viewed: 235 (23 UL)![]() Sharma, Shree Krishna ![]() in IEEE Communications Surveys and Tutorials (2018), 20(1), 674-707 Full-duplex (FD) wireless technology enables a radio to transmit and receive on the same frequency band at the same time, and it is considered to be one of the candidate technologies for the fifth ... [more ▼] Full-duplex (FD) wireless technology enables a radio to transmit and receive on the same frequency band at the same time, and it is considered to be one of the candidate technologies for the fifth generation (5G) and beyond wireless communication systems due to its advantages, including potential doubling of the capacity and increased spectrum utilization efficiency. However, one of the main challenges of FD technology is the mitigation of strong self-interference (SI). Recent advances in different SI cancellation techniques, such as antenna cancellation, analog cancellation, and digital cancellation methods, have led to the feasibility of using FD technology in different wireless applications. Among potential applications, one important application area is dynamic spectrum sharing (DSS) in wireless systems particularly 5G networks, where FD can provide several benefits and possibilities such as concurrent sensing and transmission (CST), concurrent transmission and reception, improved sensing efficiency and secondary throughput, and the mitigation of the hidden terminal problem. In this direction, first, starting with a detailed overview of FD-enabled DSS, we provide a comprehensive survey of recent advances in this domain. We then highlight several potential techniques for enabling FD operation in DSS wireless systems. Subsequently, we propose a novel communication framework to enable CST in DSS systems by employing a power control-based SI mitigation scheme and carry out the throughput performance analysis of this proposed framework. Finally, we discuss some open research issues and future directions with the objective of stimulating future research efforts in the emerging FD-enabled DSS wireless systems. [less ▲] Detailed reference viewed: 171 (4 UL)![]() ; ; Sharma, Shree Krishna ![]() in IEEE Communications Surveys and Tutorials (2018), 20(1), 264-302 Initial efforts on wireless power transfer (WPT) have concentrated toward long-distance transmission and high power applications. Nonetheless, the lower achievable transmission efficiency and potential ... [more ▼] Initial efforts on wireless power transfer (WPT) have concentrated toward long-distance transmission and high power applications. Nonetheless, the lower achievable transmission efficiency and potential health concerns arising due to high power applications, have caused limitations in their further developments. Due to tremendous energy consumption growth with ever-increasing connected devices, alternative wireless information and power transfer techniques have been important not only for theoretical research but also for the operational costs saving and for the sustainable growth of wireless communications. In this regard, radio frequency energy harvesting (RF-EH) for a wireless communications system presents a new paradigm that allows wireless nodes to recharge their batteries from the RF signals instead of fixed power grids and the traditional energy sources. In this approach, the RF energy is harvested from ambient electromagnetic sources or from the sources that directionally transmit RF energy for EH purposes. Notable research activities and major advances have occurred over the last decade in this direction. Thus, this paper provides a comprehensive survey of the state-of-art techniques, based on advances and open issues presented by simultaneous wireless information and power transfer (SWIPT) and WPT assisted technologies. More specifically, in contrast to the existing works, this paper identifies and provides a detailed description of various potential emerging technologies for the fifth generation communications with SWIPT/WPT. Moreover, we provide some interesting research challenges and recommendations with the objective of stimulating future research in this emerging domain. [less ▲] Detailed reference viewed: 161 (8 UL)![]() ; ; et al in IEEE Communications Surveys and Tutorials (2017) Detailed reference viewed: 274 (2 UL)![]() Sharma, Shree Krishna ![]() ![]() in IEEE Communications Surveys and Tutorials (2015) Cognitive Radio (CR) has been considered as a potential candidate for addressing the spectrum scarcity problem of future wireless networks. Since its conception, several researchers, academic institutions ... [more ▼] Cognitive Radio (CR) has been considered as a potential candidate for addressing the spectrum scarcity problem of future wireless networks. Since its conception, several researchers, academic institutions, industries, regulatory and standardization bodies have put their significant efforts towards the realization of CR technology. However, as this technology adapts its transmission based on the surrounding radio environment, several practical issues may need to be considered. In practice, several imperfections such as noise uncertainty, channel/interference uncertainty, transceiver hardware imperfections, signal uncertainty, synchronization issues, etc. may severely deteriorate the performance of a CR system. To this end, the investigation of realistic solutions towards combating various practical imperfections is very important for successful implementation of the cognitive technology. In this direction, first, this survey paper provides an overview of the enabling techniques for CR communications. Subsequently, it discusses the main imperfections that may occur in the most widely used CR paradigms and then reviews the existing approaches towards addressing these imperfections. Finally, it provides some interesting open research issues. [less ▲] Detailed reference viewed: 297 (15 UL)![]() Palattella, Maria Rita ![]() in IEEE Communications Surveys and Tutorials (2012), 15(3/Third Quarter 2013), 1389-1406 Detailed reference viewed: 1894 (6 UL) |
||