References of "IEEE Access"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBeam Illumination Pattern Design in Satellite Networks: Learning and Optimization for Efficient Beam Hopping
Lei, Lei UL; Lagunas, Eva UL; Yuan, Yaxiong UL et al

in IEEE Access (2020)

Beam hopping (BH) is considered to provide a high level of flexibility to manage irregular and time-varying traffic requests in future multi-beam satellite systems. In BH optimization, adopting ... [more ▼]

Beam hopping (BH) is considered to provide a high level of flexibility to manage irregular and time-varying traffic requests in future multi-beam satellite systems. In BH optimization, adopting conventional iterative heuristics may have their own limitations in providing timely solutions, and directly using data-driven technique to approximate optimization variables may lead to constraint violation and degraded performance. In this paper, we explore a combined learning-and-optimization (L&O) approach to provide an efficient, feasible, and near-optimal solution. The investigations are from the following aspects: 1) Integration ofBH optimization and learning techniques; 2) Features to be learned in BH design; 3) How to address the feasibility issue incurred by machine learning. We provide numerical results and analysis to show that the learning component in L&O significantly accelerates the procedure of identifying promising BH patterns, resulting in reduced computing time from seconds/minutes to milliseconds level. The identified learning feature enables high accuracy in predictions. In addition, the optimization component in L&O guarantees the solution’s feasibility and improves the overall performance with around 5% gap to the optimum. [less ▲]

Detailed reference viewed: 50 (3 UL)
Full Text
Peer Reviewed
See detailA RAN Resource Slicing Mechanism for Multiplexing of eMBB and URLLC Services in OFDMA based 5G Wireless Networks
Korrai, Praveenkumar UL; Lagunas, Eva UL; Sharma, Shree Krishna UL et al

in IEEE Access (2020)

Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two ... [more ▼]

Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two services on the same wireless infrastructure leads to a challenging resource allocation problem due to their heterogeneous specifications. To address this problem, slicing has emerged as an architecture that enables a logical network with specific radio access functionality to each of the supported services on the same network infrastructure. The allocation of radio resources to each slice according to their requirements is a fundamental part of the network slicing that is usually executed at the radio access network (RAN). In this work, we formulate the RAN resource allocation problem as a sum-rate maximization problem subject to the orthogonality constraint (i.e., service isolation), latency-related constraint and minimum rate constraint while maintaining the reliability constraint with the incorporation of adaptive modulation and coding (AMC). However, the formulated problem is not mathematically tractable due to the presence of a step-wise function associated with the AMC and a binary assignment variable. Therefore, to solve the proposed optimization problem, first, we relax the mathematical intractability of AMC by using an approximation of the non-linear AMC achievable throughput, and next, the binary constraint is relaxed to a box constraint by using the penalized reformulation of the problem. The result of the above two-step procedure provides a close-to-optimal solution to the original optimization problem. Furthermore, to ease the complexity of the optimization-based scheduling algorithm, a low-complexity heuristic scheduling scheme is proposed for the efficient multiplexing of URLLC and eMBB services. Finally, the effectiveness of the proposed optimization and heuristic schemes is illustrated through extensive numerical simulations. [less ▲]

Detailed reference viewed: 131 (8 UL)
Full Text
Peer Reviewed
See detailTowards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions
Sharma, Shree Krishna UL; Woungang, Isaac; Anpalagan, Alagan et al

in IEEE Access (2020)

Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e ... [more ▼]

Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions. [less ▲]

Detailed reference viewed: 56 (11 UL)
Full Text
Peer Reviewed
See detailEffective Throughput Analysis of α-η-κ-μ Fading Channels
Ai, Yun; Mathur, Aashish; Kong, Long UL et al

in IEEE Access (2020)

The α-η-κ-µ fading model is a very useful instrument to accurately describe various radio wave propagation scenarios. In this paper, we study the effective throughput performance of communication systems ... [more ▼]

The α-η-κ-µ fading model is a very useful instrument to accurately describe various radio wave propagation scenarios. In this paper, we study the effective throughput performance of communication systems over the α-η-κ-µ fading channels. Novel and exact expressions for the effective throughput over α-η-κ-µ channels are derived, and the effective throughput of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) systems over some widely used small-scale fading models are presented based on the derived results. To obtain more understandings on the impact of physical channel characteristics and system configuration on the effective throughput, closed-form expressions for the asymptotic effective throughput at high signal-to-noise ratio (SNR) regimes are also obtained. The results reveal the underlying connections between different physical channel parameters (e.g., scattering level, phase correlation, channel nonlinearity, multipath clustering, and channel imbalance) and the effective throughput. It is found that the effective throughput improves with the increase of channel nonlinearity and number of multipath clusters, and the high-SNR slope is only dependent on the channel nonlinearity and the number of multipath clusters present in the physical channel. [less ▲]

Detailed reference viewed: 49 (1 UL)
Full Text
Peer Reviewed
See detailData Redundancy Mitigation in V2X based Collective Perceptions
Huang, Hui UL; Li, Huiyun; Shao, Cuiping et al

in IEEE Access (2020), 8

Collective perception is a new paradigm to extend the limited horizon of individual vehicles. Incorporating with the recent vehicle-2-x (V2X) technology, connected and autonomous vehicles (CAVs) can ... [more ▼]

Collective perception is a new paradigm to extend the limited horizon of individual vehicles. Incorporating with the recent vehicle-2-x (V2X) technology, connected and autonomous vehicles (CAVs) can periodically share their sensory information, given that traffic management authorities and other road participants can benefit from these information enormously. Apart from the benefits, employing collective perception could result in a certain level of transmission redundancy, because the same object might fall in the visible region of multiple CAVs, hence wasting the already scarce network resources. In this paper, we analytically study the data redundancy issue in highway scenarios, showing that the redundant transmissions could result in heavy loads on the network under medium to dense traffic. We then propose a probabilistic data selection scheme to suppress redundant transmissions. The scheme allows CAVs adaptively adjust the transmission probability of each tracked objects based on the position, vehicular density and road geometry information. Simulation results confirm that our approach can reduce at most 60% communication overhead in the meanwhile maintain the system reliability at desired levels. [less ▲]

Detailed reference viewed: 34 (4 UL)
Full Text
Peer Reviewed
See detailThe Potential Short- and Long-Term Disruptions and Transformative Impacts of 5G and Beyond Wireless Networks: Lessons Learnt from the Development of a 5G Testbed Environment
PATWARY, MOHMAMMAD; NAWAZ, SYED JUNAID; RAHMAN, MD. ABDUR et al

in IEEE Access (2020)

The capacity and coverage requirements for 5th generation (5G) and beyond wireless connectivity will be significantly different from the predecessor networks. To meet these requirements, the anticipated ... [more ▼]

The capacity and coverage requirements for 5th generation (5G) and beyond wireless connectivity will be significantly different from the predecessor networks. To meet these requirements, the anticipated deployment cost in the United Kingdom (UK) is predicted to be between £30bn and £50bn, whereas the current annual capital expenditure (CapEX) of the mobile network operators (MNOs) is £2.5bn. This prospect has vastly impacted and has become one of the major delaying factors for building the 5G physical infrastructure, whereas other areas of 5G are progressing at their speed. Due to the expensive and complicated nature of the network infrastructure and spectrum, the second-tier operators, widely known as mobile virtual network operators (MVNO), are entirely dependent on the MNOs. In this paper, an extensive study is conducted to explore the possibilities of reducing the 5G deployment cost and developing viable business models. In this regard, the potential of infrastructure, data, and spectrum sharing is thoroughly investigated. It is established that the use of existing public infrastructure (e.g., streetlights, telephone poles, etc.) has a potential to reduce the anticipated cost by about 40% to 60%. This paper also reviews the recent Ofcom initiatives to release location-based licenses of the 5G-compatible radio spectrum. Our study suggests that simplification of infrastructure and spectrum will encourage the exponential growth of scenario-specific cellular networks (e.g., private networks, community networks, micro-operators) and will potentially disrupt the current business models of telecommunication business stakeholders – specifically MNOs and TowerCos. Furthermore, the anticipated dense device connectivity in 5G will increase the resolution of traditional and non-traditional data availability significantly. This will encourage extensive data harvesting as a business opportunity and function within small and medium-sized enterprises (SMEs) as well as large social networks. Consequently, the rise of new infrastructures and spectrum stakeholders is anticipated. This will fuel the development of a 5G data exchange ecosystem where data transactions are deemed to be high-value business commodities. The privacy and security of such data, as well as definitions of the associated revenue models and ownership, are challenging areas – and these have yet to emerge and mature fully. In this direction, this paper proposes the development of a unified data hub with layered structured privacy and security along with blockchain and encrypted off-chain based ownership/royalty tracking. Also, a data economy-oriented business model is proposed. The study found that with the potential commodification of data and data transactions along with the low-cost physical infrastructure and spectrum, the 5G network will introduce significant disruption in the Telco business ecosystem. [less ▲]

Detailed reference viewed: 99 (4 UL)
Full Text
Peer Reviewed
See detailThe Application of Power-Domain Non-Orthogonal Multiple Access in Satellite Communication Networks
Yan, Xiaojuan; An, Kang; Liang, Tao et al

in IEEE Access (2019), 7

Satellite communication networks are expected to be indispensable as part of an integrated complement for the upcoming 5G networks since they can provide the most comprehensive coverage and reliable ... [more ▼]

Satellite communication networks are expected to be indispensable as part of an integrated complement for the upcoming 5G networks since they can provide the most comprehensive coverage and reliable connection for areas where are economically unviable and/or difficult to deploy terrestrial infrastructures. Meanwhile, the power-domain non-orthogonal multiple access (NOMA), which can serve multiple users simultaneously within the same time/frequency block, has been viewed as another promising strategy used in the 5G network to provide high spectral efficiency and resource utilization. In this paper, we introduce a general overview of the application of the NOMA to various satellite architectures for the benefits of meeting the availability, coverage, and efficiency requirements targeted by the 5G. The fundamental and ubiquitous features of satellite link budget are first reviewed. Then, the advantage and benefit of introducing the NOMA scheme in various satellite architectures, such as conventional downlink/uplink satellite networks, cognitive satellite terrestrial networks, and cooperative satellite networks with satellite/terrestrial relays, are provided, along with the motivation and research methodology for each scenario. Finally, this paper reviews the potential directions for future research. [less ▲]

Detailed reference viewed: 20 (0 UL)
Full Text
Peer Reviewed
See detailQuantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future
Nawaz, Sayed Junaid; Sharma, Shree Krishna UL; Wyne, Shurjeel et al

in IEEE Access (2019)

The upcoming 5th Generation (5G) of wireless networks is expected to lay a foundation of intelligent networks with the provision of some isolated Artificial Intelligence (AI) operations. However, fully ... [more ▼]

The upcoming 5th Generation (5G) of wireless networks is expected to lay a foundation of intelligent networks with the provision of some isolated Artificial Intelligence (AI) operations. However, fully-intelligent network orchestration and management for providing innovative services will only be realized in Beyond 5G (B5G) networks. To this end, we envisage that the 6th Generation (6G) of wireless networks will be driven by on-demand self-reconfiguration to ensure a many-fold increase in the network performanceandservicetypes.Theincreasinglystringentperformancerequirementsofemergingnetworks may finally trigger the deployment of some interesting new technologies such as large intelligent surfaces, electromagnetic-orbital angular momentum, visible light communications and cell-free communications – tonameafew.Ourvisionfor6Gis–amassivelyconnectedcomplexnetworkcapableofrapidlyresponding to the users’ service calls through real-time learning of the network state as described by the network-edge (e.g., base-station locations, cache contents, etc.), air interface (e.g., radio spectrum, propagation channel, etc.), and the user-side (e.g., battery-life, locations, etc.). The multi-state, multi-dimensional nature of the network state, requiring real-time knowledge, can be viewed as a quantum uncertainty problem. In this regard, the emerging paradigms of Machine Learning (ML), Quantum Computing (QC), and Quantum ML (QML) and their synergies with communication networks can be considered as core 6G enablers. Considering these potentials, starting with the 5G target services and enabling technologies, we provide a comprehensivereviewoftherelatedstate-of-the-artinthedomainsofML(includingdeeplearning),QCand QML, and identify their potential benefits, issues and use cases for their applications in the B5G networks. Subsequently,weproposeanovelQC-assistedandQML-basedframeworkfor6Gcommunicationnetworks whilearticulatingitschallengesandpotentialenablingtechnologiesatthenetwork-infrastructure,networkedge, air interface and user-end. Finally, some promising future research directions for the quantum- and QML-assisted B5G networks are identified and discussed. [less ▲]

Detailed reference viewed: 236 (7 UL)
Full Text
Peer Reviewed
See detailProfiling Performance of Application Partitioning for Wearable Devices in Mobile Cloud and Fog Computing
Fiandrino, Claudio; Allio, Nicholas; Kliazovich, Dzmitry et al

in IEEE Access (2019), 7

Wearable devices have become essential in our daily activities. Due to battery constrains the use of computing, communication, and storage resources is limited. Mobile Cloud Computing (MCC) and the ... [more ▼]

Wearable devices have become essential in our daily activities. Due to battery constrains the use of computing, communication, and storage resources is limited. Mobile Cloud Computing (MCC) and the recently emerged Fog Computing (FC) paradigms unleash unprecedented opportunities to augment capabilities of wearables devices. Partitioning mobile applications and offloading computationally heavy tasks for execution to the cloud or edge of the network is the key. Offloading prolongs lifetime of the batteries and allows wearable devices to gain access to the rich and powerful set of computing and storage resources of the cloud/edge. In this paper, we experimentally evaluate and discuss rationale of application partitioning for MCC and FC. To experiment, we develop an Android-based application and benchmark energy and execution time performance of multiple partitioning scenarios. The results unveil architectural trade-offs that exist between the paradigms and devise guidelines for proper power management of service-centric Internet of Things (IoT) applications. [less ▲]

Detailed reference viewed: 52 (0 UL)
Full Text
Peer Reviewed
See detailOn the Application of Directional Antennas in Multi-Tier Unmanned Aerial Vehicle Networks
Zhang, J.; Xu, H.; Xiang, Lin UL et al

in IEEE Access (2019), 7

This paper evaluates the performance of downlink information transmission in three-dimensional (3D) unmanned aerial vehicle (UAV) networks, where multi-tier UAVs of different types and flying altitudes ... [more ▼]

This paper evaluates the performance of downlink information transmission in three-dimensional (3D) unmanned aerial vehicle (UAV) networks, where multi-tier UAVs of different types and flying altitudes employ directional antennas for communication with ground user equipments (UEs). We introduce a novel tractable antenna gain model, which is a nonlinear function of the elevation angle and the directivity factor, for directional antenna-based UAV communication. Since the transmission range of a UAV is limited by its antenna gain and the receiving threshold of the UEs, only UAVs located in a finite region in each tier can successfully communicate with the UEs. The communication connectivity, association probability as well as coverage probability of the considered multi-tier UAV networks are derived for both line-of-sight (LoS) and non-line-of-sight (NLoS) propagation scenarios. Our analytical results unveil that, for UAV networks employing directional antennas, a necessary tradeoff between connectivity and coverage probability exists. Consequently, UAVs flying at low altitudes require a large elevation angle in order to successfully serve the ground UEs. Moreover, by employing directional antennas an optimal directivity factor exists for maximizing the coverage probability of the multi-tier UAV networks. Simulation results validate the analytical derivations and suggest the application of high-gain directional antennas to improve downlink transmission in the multi-tier UAV networks. [less ▲]

Detailed reference viewed: 90 (15 UL)
Full Text
Peer Reviewed
See detailFPGA Acceleration for Computationally Efficient Symbol-Level Precoding in Multi-User Multi-Antenna Communication Systems
Krivochiza, Jevgenij UL; Merlano Duncan, Juan Carlos UL; Andrenacci, Stefano UL et al

in IEEE Access (2019)

In this paper, we demonstrate an FPGA accelerated design of the computationally efficient Symbol-Level Precoding (SLP) for high-throughput communication systems. The SLP technique recalculates optimal ... [more ▼]

In this paper, we demonstrate an FPGA accelerated design of the computationally efficient Symbol-Level Precoding (SLP) for high-throughput communication systems. The SLP technique recalculates optimal beam-forming vectors by solving a non-negative least squares (NNLS) problem per every set of transmitted symbols. It exploits the advantages of constructive inter-user interference to minimize the total transmitted power and increase service availability. The benefits of using SLP come with a substantially increased computational load at a gateway. The FPGA design enables the SLP technique to perform in realtime operation mode and provide a high symbol throughput for multiple receive terminals. We define the SLP technique in a closed-form algorithmic expression and translate it to Hardware Description Language (HDL) and build an optimized HDL core for an FPGA. We evaluate the FPGA resource occupation, which is required for high throughput multiple-input-multiple-output (MIMO) systems with sizeable dimensions. We describe the algorithmic code, the I/O ports mapping and the functional behavior of the HDL core. We deploy the IP core to an actual FPGA unit and benchmark the energy efficiency performance of SLP. The synthetic tests demonstrate a fair energy efficiency improvement of the proposed closed-form algorithm, also compared to the best results obtained through MATLAB numerical simulations. [less ▲]

Detailed reference viewed: 178 (34 UL)
Full Text
Peer Reviewed
See detailMulti-Objective Scientific-Workflow Scheduling With Data Movement Awareness in Cloud.
Wangsom, Peerasak; Lavagnananda, Kittichai; Bouvry, Pascal UL

in IEEE Access (2019), 7

Due to serving several purposes simultaneously, running scientific workflows on dynamic environments such as cloud computing, has become multi-objective scheduling. Among these purposes, Cost and Makespan ... [more ▼]

Due to serving several purposes simultaneously, running scientific workflows on dynamic environments such as cloud computing, has become multi-objective scheduling. Among these purposes, Cost and Makespan are probably the most two primitive objectives. Another critical factor in a large-scale scientific workflow is tremendous amount of data during execution. Therefore, this work also includes Data Movement as an additional objective as it has a major impact on network utilization and energy consumption in network equipment in cloud data center. In considering these three objectives, this work proposes a framework for scheduling solutions which combines a new nodes clustering technique in Directed Acyclic Graph (DAG) model known as Multilevel Dependent Node Clustering (MDNC) and the multiobjective optimization, Extreme Nondominated Sorting Genetic Algorithm-III (E-NSGA-III). E-NSGAIII is the recent extension of Nondominated Sorting Genetic Algorithm (NSGA-III). Five well-known scientific workflows, CyberShake, Epigenomics, LIGO, Montage, and SIPHT are selected as testbeds, while the commonly known Hypervolume is chosen as the performance metric. In this work, MDNC is also experimented with both NSGA-III. Comparison among three approaches, E-NAGA-III alone, E-NAGA-III with Peer-to-Peer clustering and E-NAGA-III with MDNC are carried out. The superiority of the proposed framework among them and its limitation are discussed. [less ▲]

Detailed reference viewed: 23 (0 UL)
Full Text
Peer Reviewed
See detailAn Uplink UE Group-Based Scheduling Technique for 5G mMTC Systems Over LEO Satellite
Kodheli, Oltjon UL; Andrenacci, Stefano; Maturo, Nicola UL et al

in IEEE Access (2019)

Narrowband Internet of Things (NB-IoT) is one of the most promising IoT technology to support the massive machine-type communication (mMTC) scenarios of the fifth generation mobile communication (5G ... [more ▼]

Narrowband Internet of Things (NB-IoT) is one of the most promising IoT technology to support the massive machine-type communication (mMTC) scenarios of the fifth generation mobile communication (5G). While the aim of this technology is to provide global coverage to the low-cost IoT devices distributed all over the globe, the vital role of satellites to complement and extend the terrestrial IoT network in remote or under-served areas has been recognized. In the context of having the global IoT networks, low earth (LEO) orbits would be beneficial due to their smaller propagation signal loss, which for the low complexity, low power, and cheap IoT devices is of utmost importance to close the link-budget. However, while this would lessen the problem of large delay and signal loss in the geostationary (GEO) orbit, it would come up with increased Doppler effects. In this paper, we propose an uplink scheduling technique for a LEO satellite-based mMTC NB-IoT system, able to mitigate the level of the differential Doppler down to a value tolerable by the IoT devices. The performance of the proposed strategy is validated through numerical simulations and the achievable data rates of the considered scenario are shown, in order to emphasize the limitations of such systems coming from the presence of a satellite channel. [less ▲]

Detailed reference viewed: 177 (44 UL)
Full Text
Peer Reviewed
See detailSDR Implementation of a Testbed for Real-Time Interference Detection with Signal Cancellation
Politis, Christos; Maleki, Sina UL; Merlano Duncan, Juan Carlos UL et al

in IEEE Access (2018)

Interference greatly affects the quality of service of wireless and satellite communications, having also a financial impact for the telecommunication operators. Therefore, as the interfering events ... [more ▼]

Interference greatly affects the quality of service of wireless and satellite communications, having also a financial impact for the telecommunication operators. Therefore, as the interfering events increase due to the deployment of new services, there is an increasing demand for the detection and mitigation of interference. There are several interference detectors in the literature, evaluated by using extensive simulations. However, this paper goes one step further, designing, implementing and evaluating the performance of the developed interference detection algorithms experimentally using a software defined radio, and particularly the universal software radio peripheral platform. A realistic communication system is implemented, consisting of a transmitter, a channel emulator and a receiver. Based on this system, we implement all the appropriate communications features such as pulse shaping, synchronization and demodulation. The real-time system implementation is validated and evaluated through signal and interference detection. We observe that the interference detection threshold is critical to the functioning of the system. Several existing interference detection techniques fail in practice due to this fact. In this paper, we propose a robust and practically implementable method the selection of threshold. Finally, we present real-time experimental results for the probabilities of false alarm and detection in order to verify the accuracy of our study and reinforce our theoretical analysis. [less ▲]

Detailed reference viewed: 179 (22 UL)
Full Text
Peer Reviewed
See detailIntelligent Gaming for Mobile Crowd-Sensing Participants to Acquire Trustworthy Big Data in the Internet of Things
Pouryazdan, Maryam; Fiandrino, Claudio; Kantarci, Burak et al

in IEEE Access (2017), 5

In mobile crowd-sensing systems, the value of crowd-sensed big data can be increased by incentivizing the users appropriately. Since data acquisition is participatory, crowd-sensing systems face the ... [more ▼]

In mobile crowd-sensing systems, the value of crowd-sensed big data can be increased by incentivizing the users appropriately. Since data acquisition is participatory, crowd-sensing systems face the challenge of data trustworthiness and truthfulness assurance in the presence of adversaries whose motivation can be either manipulating sensed data or collaborating unfaithfully with the motivation of maximizing their income. This paper proposes a game theoretic methodology to ensure trustworthiness in user recruitment in mobile crowd-sensing systems. The proposed methodology is a platform-centric framework that consists of three phases: user recruitment, collaborative decision making on trust scores, and badge rewarding. In the proposed framework, users are incentivized by running sub-game perfect equilibrium and gami cation techniques. Through simulations, we showthat approximately 50% and a minimum of 15% improvement can be achieved by the proposed methodology in terms of platform and user utility, respectively, when compared with fully distributed and user-centric trustworthy crowd-sensing. [less ▲]

Detailed reference viewed: 89 (5 UL)
Full Text
Peer Reviewed
See detailJoint Beamforming and Power Optimization with Iterative User Clustering for MISO-NOMA Systems
Liu, Zhengxuan; Lei, Lei UL; Zhang, Ningbo et al

in IEEE Access (2017)

Detailed reference viewed: 128 (8 UL)