References of "Glia"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPhagocytosis‐related NADPH oxidase 2 subunit gp91phox contributes to neurodegeneration after repeated systemic challenge with lipopolysaccharides
Shahraz, Anahita; Wißfeld, Jannis; Ginolhac, Aurélien UL et al

in Glia (2020)

Repeated systemic challenge with lipopolysaccharides (LPS) can induce microglia activation and inflammatory neurodegeneration in the substantia nigra pars compacta region of mice. We now explored the role ... [more ▼]

Repeated systemic challenge with lipopolysaccharides (LPS) can induce microglia activation and inflammatory neurodegeneration in the substantia nigra pars compacta region of mice. We now explored the role of mononuclear phagocytes associated nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX‐2) in inflammatory neurodegeneration. Cybb ‐deficient NOX‐2 knock‐out (KO) and control wild type (WT) mice were treated intraperitoneally daily over four consecutive days with 1 μg/gbw/day LPS. Transcriptome analysis by RNA‐seq of total brain tissue indicated increased LPS‐induced upregulation of genes belonging to the reactive oxygen species and reactive nitrogen species production, complement and lysosome activation as well as apoptosis and necroptosis in WT compared to NOX‐2 KO mice. Validation of up‐regulated gene transcripts via qRT‐PCR confirmed that LPS‐challenged NOX‐2 KO mice expressed lower levels of the microglial phagocytosis‐related genes Nos2 , Cd68 , Aif1/Iba1 , Cyba , Itgam , and Fcer1g compared to WT mice at Day 5 after systemic inflammatory challenge, but no significant differences in the pro‐inflammatory genes Tnfα and Il1b as well as microglial IBA1 and CD68 intensities were observed between both genotypes. Furthermore, loss of tyrosine hydroxylase positive (TH+) and NeuN positive neurons in the substantia nigra pars compacta upon repeated systemic LPS application were attenuated in NOX‐2 KO mice. Thus, our data demonstrate that loss of dopaminergic neurons in the substantia nigra pars compacta after repeated systemic challenge with LPS is associated with a microglial phagocytosis‐related gene activation profile involving the NADPH oxidase subunit Cybb/gp91phox. [less ▲]

Detailed reference viewed: 103 (1 UL)
Full Text
Peer Reviewed
See detailTREM2 triggers microglial density and age‐related neuronal loss
Linnartz-Gerlach, Bettina; Bodea, Liviu-Gabriel; Klaus, Christine et al

in Glia (2018)

The microglial triggering receptor expressed on myeloid cells 2 (TREM2) signals via the activatory membrane adaptor molecule TYROBP. Genetic variants or mutations of TREM2 or TYROBP have been linked to ... [more ▼]

The microglial triggering receptor expressed on myeloid cells 2 (TREM2) signals via the activatory membrane adaptor molecule TYROBP. Genetic variants or mutations of TREM2 or TYROBP have been linked to inflammatory neurodegenerative diseases associated with aging. The typical aging process goes along with microglial changes and mild neuronal loss, but the exact contribution of TREM2 is still unclear. Aged TREM2 knock‐out mice showed decreased age‐related neuronal loss in the substantia nigra and the hippocampus. Transcriptomic analysis of the brains of 24 months old TREM2 knock‐out mice revealed 211 differentially expressed genes mostly downregulated and associated with complement activation and oxidative stress response pathways. Consistently, 24 months old TREM2 knock‐out mice showed lower transcription of microglial (Aif1 and Tmem119), oxidative stress markers (Inos, Cyba, and Cybb) and complement components (C1qa, C1qb, C1qc, C3, C4b, Itgam, and Itgb2), decreased microglial numbers and expression of the microglial activation marker Cd68, as well as accumulation of oxidized lipids. Cultured microglia of TREM2 knock‐out mice showed reduced phagocytosis and oxidative burst. Thus, microglial TREM2 contributes to age‐related microglial changes, phagocytic oxidative burst, and loss of neurons with possible detrimental effects during physiological aging. [less ▲]

Detailed reference viewed: 176 (16 UL)
Full Text
Peer Reviewed
See detailFunctional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells
Kleiderman, Susanne; Sá, Joao; Teixeira, Ana et al

in Glia (2016), 64(5), 695-715

Availability of homogeneous astrocyte populations would facilitate research concerning cell plasticity (metabolic and transcriptional adaptations; innate immune responses) and cell cycle reactivation ... [more ▼]

Availability of homogeneous astrocyte populations would facilitate research concerning cell plasticity (metabolic and transcriptional adaptations; innate immune responses) and cell cycle reactivation. Current protocols to prepare astrocyte cultures differ in their final content of immature precursor cells, pre-activated cells or entirely different cell types. A new method taking care of all these issues would improve research on astrocyte functions. We found here that the exposure of a defined population of pluripotent stem cell-derived neural stem cells (NSC) to BMP4 results in pure, non-proliferating astrocyte cultures within 24-48 h. These murine astrocytes generated from embryonic stem cells (mAGES) expressed the positive markers GFAP, aquaporin 4 and GLT-1, supported neuronal function, and acquired innate immune functions such as the response to TNF and IL-1. The protocol was applicable to several normal or disease-prone pluripotent cell lines, and the corresponding mAGES all exited the cell cycle and lost most of their nestin expression, in contrast to astrocytes generated by serum-addition or obtained as primary cultures. Comparative gene expression analysis of mAGES and NSC allowed quantification of differences between the two cell types and a definition of an improved maker set to define astrocytes. Inclusion of several published data sets in this transcriptome comparison revealed the similarity of mAGES with cortical astrocytes in vivo. Metabolic analysis of homogeneous NSC and astrocyte populations revealed distinct neurochemical features: both cell types synthesized glutamine and citrate, but only mature astrocytes released these metabolites. Thus, the homogeneous cultures allowed an improved definition of NSC and astrocyte features. [less ▲]

Detailed reference viewed: 258 (42 UL)
Full Text
Peer Reviewed
See detailNotch signaling modulates the activation of microglial cells
Grandbarbe, Luc UL; Michelucci, Alessandro UL; Heurtaux, Tony UL et al

in Glia (2007), 55(15), 1519-30

The Notch signaling pathway plays a crucial role in specifying cellular fate in metazoan development by regulating communication between adjacent cells. Correlative studies suggested an involvement of ... [more ▼]

The Notch signaling pathway plays a crucial role in specifying cellular fate in metazoan development by regulating communication between adjacent cells. Correlative studies suggested an involvement of Notch in hematopoietic cell development. Here, we report that the Notch pathway is expressed and active in microglial cells. During inflammatory activation, the transcription of the Notch down-stream effector Hes1 is downregulated. When Notch1 transcription in microglia is inhibited, an upregulation of the expression of pro-inflammatory cytokines is observed. Notch stimulation in activated microglia, using a soluble form of its ligand Jagged1, induces a decrease in pro-inflammatory cytokines secretion and nitric oxide production as well as an increase in phagocytic activity. Notch-stimulation is accompanied by an increase in the rate of STAT3 phosphorylation and nuclear translocation. Our results show that the Notch pathway plays an important role in the control of inflammatory reactions in the CNS. [less ▲]

Detailed reference viewed: 146 (5 UL)