References of "Experimental cell research"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1.
Kieper, Nicole; Holmstrom, Kira M.; Ciceri, Dalila et al

in Experimental cell research (2010), 316(7), 1213-24

Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro ... [more ▼]

Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders. [less ▲]

Detailed reference viewed: 127 (1 UL)
Peer Reviewed
See detailThe intermediate filament protein vimentin binds specifically to a recombinant integrin α2/β1 cytoplasmic tail complex and co-localizes with native α2/β1 in endothelial cell focal adhesions
Kreis, Stephanie UL; Schönfeld, H.-J. B; Melchior, C. A et al

in Experimental Cell Research (2005), 305(1), 110-121

Integrin receptors are crucial players in cell adhesion and migration. Identification and characterization of cellular proteins that interact with their short α and β cytoplasmic tails will help to ... [more ▼]

Integrin receptors are crucial players in cell adhesion and migration. Identification and characterization of cellular proteins that interact with their short α and β cytoplasmic tails will help to elucidate the molecular mechanisms by which integrins mediate bi-directional signaling across the plasma membrane. Integrin α2β1 is a major collagen receptor but to date, only few proteins have been shown to interact with the α2 cytoplasmic tail or with the α2β1 complex. In order to identify novel binding partners of a α2β1cytoplasmic domain complex, we have generated recombinant GST-fusion proteins, incorporating the leucine zipper heterodimerization cassettes of Jun and Fos. To ascertain proper functionality of the recombinant proteins, interaction with natural binding partners was tested. GST-α2 and GST-Jun α2 bound His-tagged calreticulin while GST-β1 and GST-Fos β1 proteins bound talin. In screening assays for novel binding partners, the immobilized GST-Jun α2/GST-Fos β1 heterodimeric complex, but not the single subunits, interacted specifically with endothelial cell-derived vimentin. Vimentin, an abundant intermediate filament protein, has previously been shown to co-localize with αvβ3-positive focal contacts. Here, we provide evidence that this interaction also occurs with α2β1-enriched focal adhesions and we further show that this association is lost after prolonged adhesion of endothelial cells to collagen. © 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 80 (5 UL)