![]() ; Retter, Talia ![]() in European Journal of Neuroscience (2020) To investigate face individuation (FI), a critical brain function in the human species, an oddball fast periodic visual stimulation (FPVS) approach was recently introduced (Liu‐Shuang et al ... [more ▼] To investigate face individuation (FI), a critical brain function in the human species, an oddball fast periodic visual stimulation (FPVS) approach was recently introduced (Liu‐Shuang et al., Neuropsychologia, 2014, 52, 57). In this paradigm, an image of an unfamiliar “base” facial identity is repeated at a rapid rate F (e.g., 6 Hz) and different unfamiliar “oddball” facial identities are inserted every nth item, at a F/n rate (e.g., every 5th item, 1.2 Hz). This stimulation elicits FI responses at F/n and its harmonics (2F/n, 3F/n, etc.), reflecting neural discrimination between oddball versus base facial identities, which is quantified in the frequency domain of the electroencephalogram (EEG). This paradigm, used in 20 published studies, demonstrates substantial advantages for measuring FI in terms of validity, objectivity, reliability, and sensitivity. Human intracerebral recordings suggest that this FI response originates from neural populations in the lateral inferior occipital and fusiform gyri, with a right hemispheric dominance consistent with the localization of brain lesions specifically affecting facial identity recognition (prosopagnosia). Here, we summarize the contributions of the oddball FPVS framework toward understanding FI, including its (a)typical development, with early studies supporting the application of this technique to clinical testing (e.g., autism spectrum disorder). This review also includes an in‐depth analysis of the paradigm's methodology, with guidelines for designing future studies. A large‐scale group analysis compiling data across 130 observers provides insights into the oddball FPVS FI response properties. Overall, we recommend the oddball FPVS paradigm as an alternative approach to behavioral or traditional event‐related potential EEG measures of face individuation. [less ▲] Detailed reference viewed: 43 (2 UL)![]() ; ; et al in European Journal of Neuroscience (2018) Detailed reference viewed: 19 (0 UL)![]() ; ; et al in European Journal of Neuroscience (2017) Detailed reference viewed: 16 (0 UL)![]() ; ; et al in European Journal of Neuroscience (2017), 45(4), 528 Detailed reference viewed: 53 (2 UL)![]() ; ; Zell, Vivien ![]() in European Journal of Neuroscience (2016) Detailed reference viewed: 147 (3 UL)![]() ; ; et al in European Journal of Neuroscience (2016) Detailed reference viewed: 158 (3 UL)![]() ; ; et al in European Journal of Neuroscience (2016) Detailed reference viewed: 108 (3 UL)![]() ; ; et al in European Journal of Neuroscience (2013) Parkinson's disease is characterized by a selective loss of dopaminergic neurons in the substantia nigra (SN). However, whether regenerative endogenous neurogenesis is taking place in the mammalian SN of ... [more ▼] Parkinson's disease is characterized by a selective loss of dopaminergic neurons in the substantia nigra (SN). However, whether regenerative endogenous neurogenesis is taking place in the mammalian SN of parkinsonian and non-parkinsonian brains remains of debate. Here, we tested whether proliferating cells in the SN and their neurogenic potential would be affected by anti-inflammatory treatment under physiological conditions and in the 6-hydroxy-dopamine (6-OHDA) Parkinson's disease mouse model. We report that the majority of newly generated nigral cells are positive for Doublecortin (Dcx), which is an often used marker for neural progenitor cells. Yet, Dcx expression levels in these cells were much lower than in neural progenitor cells of the subventricular zone and the dentate gyrus neural progenitor cells. Furthermore, these newly generated nigral cells are negative for neuronal lineage markers such as TuJ1 and NeuN. Therefore, their neuronal commitment is questionable. Instead, we found evidence for oligodendrogenesis and astrogliosis in the SN. Finally, neither short-term nor long-term inhibition of neuroinflammation by Minocycline- or 6-OHDA-induced lesion affected the numbers of newly generated cells in our disease paradigm. Our findings of adult generated Dcx+ cells in the SN add important data for understanding the cellular composition and consequently the regenerative capacity of the SN. [less ▲] Detailed reference viewed: 181 (7 UL)![]() ; ; et al in European Journal of Neuroscience (1998), 10 Using H2(15)O 3D Positron Emission Tomography (PET), regional cerebral blood flow (rCBF) was measured in six human subjects under two different conditions: at rest and while performing self-paced ... [more ▼] Using H2(15)O 3D Positron Emission Tomography (PET), regional cerebral blood flow (rCBF) was measured in six human subjects under two different conditions: at rest and while performing self-paced horizontal saccadic eye movements in darkness. These two conditions were repeated four times each. First, the comparison between the four saccadic and four resting conditions was investigated in a group and a single subject analysis. Saccades elicited bilateral rCBF increases in the medial part of the superior frontal gyrus (supplementary eye field), precentral gyrus (frontal eye field), superior parietal lobule, anterior medial part of the occipital lobe involving striate and extrastriate cortex (lingual gyrus and cuneus), and in the right inferior parietal lobule. At the subcortical level, activations were found in the left putamen. These results mainly replicate previous PET findings on saccadic control. Second, the interaction between the experimental conditions and their repetition was examined. When activations throughout repetition of the same saccadic task are compared, the supplementary eye fields show a progressive increase of activation. On the contrary, the activation in the cerebellum, left superior parietal lobule and left occipital cortex progressively decreases during the scanning session. Given the existence of such an interaction, the pattern of activations must be interpreted as a function of task repetition. This may be a factor explaining some apparent mismatch between different studies. [less ▲] Detailed reference viewed: 130 (1 UL)![]() ![]() Hanesch, Ulrike ![]() in European Journal of Neuroscience (1993), 5 Detailed reference viewed: 83 (0 UL)![]() ![]() Hanesch, Ulrike ![]() in European Journal of Neuroscience (1991), 4(Suppl. 4), 131 Detailed reference viewed: 25 (0 UL)![]() ![]() Hanesch, Ulrike ![]() in European Journal of Neuroscience (1990), 3 Detailed reference viewed: 27 (0 UL)![]() ![]() Hanesch, Ulrike ![]() in European Journal of Neuroscience (1989), (Suppl. 2), 69 Detailed reference viewed: 36 (1 UL) |
||