![]() Sengupta, Anupam ![]() in Environmental Microbiology (2019) Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also ... [more ▼] Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also oxidize sulfide with nitrate and oxygen, little is known about the prevalence of this chemolithotrophic lifestyle in the environment. In this study, we investigated the role of these phototrophs in light‐independent sulfide removal in the chemocline of Lake Cadagno. Our temporally resolved, high‐resolution chemical profiles indicated that dark sulfide oxidation was coupled to high oxygen consumption rates of ~9 μM O2·h‐1. Single‐cell analyses of lake water incubated with 13CO2 in the dark revealed that Chromatium okenii was to a large extent responsible for aerobic sulfide oxidation and it accounted for up to 40 % of total dark carbon fixation. The genome of Chr. okenii reconstructed from the Lake Cadagno metagenome confirms its capacity for microaerophilic growth and provides further insights into its metabolic capabilities. Moreover, our genomic and single‐cell data indicated that other PSB grow microaerobically in these apparently anoxic waters. Altogether, our observations suggest that aerobic respiration may not only play an underappreciated role in anoxic environments, but also that organisms typically considered strict anaerobes may be involved. [less ▲] Detailed reference viewed: 136 (16 UL)![]() Greenhalgh, Kacy ![]() ![]() in Environmental Microbiology (2016), 18(7), 21032116 With technological advances in culture-independent molecular methods, we are uncovering a new facet of our natural history by accounting for the vast diversity of microbial life which colonizes the human ... [more ▼] With technological advances in culture-independent molecular methods, we are uncovering a new facet of our natural history by accounting for the vast diversity of microbial life which colonizes the human body. The human microbiome contributes functional genes and metabolites which affect human physiology and are, therefore, considered an important factor for maintaining health. Much has been described in the past decade based primarily on 16S rRNA gene amplicon sequencing regarding the diversity, structure, stability and dynamics of human microbiota in their various body habitats, most notably within the gastrointestinal tract (GIT). Relatively high levels of variation have been described across different stages of life and geographical locations for the GIT microbiome. These observations may prove helpful for the future contextualization of patterns in other body habitats especially in relation to identifying generalizable trends over human lifetime. Given the large degree of complexity and variability, a key challenge will be how to define baseline healthy microbiomes and how to identify features which reflect deviations therefrom in the future. In this context, metagenomics and functional omics will likely play a central role as they will allow resolution of microbiome-conferred functionalities associated with health. Such information will be vital for formulating therapeutic interventions aimed at managing microbiota-mediated health particularly in the GIT over the course of a human lifetime. [less ▲] Detailed reference viewed: 121 (2 UL)![]() Sheik, Abdul ![]() in Environmental Microbiology (2013), 15(5), 1441-51 Phaeocystis globosa is an ecologically important bloom-forming phytoplankton, which sequesters substantial amounts of inorganic carbon and can form carbon-enriched chitinous star-like structures. Viruses ... [more ▼] Phaeocystis globosa is an ecologically important bloom-forming phytoplankton, which sequesters substantial amounts of inorganic carbon and can form carbon-enriched chitinous star-like structures. Viruses infecting P. globosa (PgVs) play a significant regulatory role in population dynamics of the host species. However, the extent to which viruses alter host physiology and its carbon assimilation on single cell level is still largely unknown. This study demonstrates for the first time the impact of viral infection on carbon assimilation and cell morphology of individual axenic P. globosa cells using two single cell techniques: high resolution nanometre-scale Secondary-Ion Mass Spectrometry (nanoSIMS) approach and atomic force microscopy (AFM). Up until viral lysis (19 h post infection), the bulk carbon assimilation by infected P. globosa cultures was identical to the assimilation by the non-infected cultures (33 micromol C l(-1) ). However, single cell analysis showed that viral infection of P. globosa impedes the release of star-like structures. Non-infected cells transfer up to 44.5 micromol C l(-1) (36%) of cellular biomass in the form of star-like structures, suggesting a vital role in the survival of P. globosa cells. We hypothesize that impediment of star-like structures in infected P. globosa cells may inactivate viral infectivity by forming flocculants after cell lysis. Moreover, we show that substantial amounts of newly produced viruses ( approximately 68%) were attached to P. globosa cells prior to cell lysis. Further, we speculate that infected cells become more susceptible for grazing which provides potential reasons for the sudden disappearance of PgVs in the environment. The scenarios of enhanced grazing is at odds to the current perspective that viral infections facilitates microbial mediated processes by diverting host material away from the higher trophic levels. [less ▲] Detailed reference viewed: 67 (8 UL)![]() Wilmes, Paul ![]() in Environmental Microbiology (2004), 6(9), 911-920 In the post-genomic era, the focus of numerous researchers has moved to studying the functional products of gene expression. In microbiology, these 'omic' approaches have largely been limited to pure ... [more ▼] In the post-genomic era, the focus of numerous researchers has moved to studying the functional products of gene expression. In microbiology, these 'omic' approaches have largely been limited to pure cultures of microorganisms. Consequently, they do not provide information on gene expression in a complex mixture of microorganisms as found in the environment. Our method enabled the successful extraction and purification of the entire proteome from a laboratory-scale activated sludge system optimized for enhanced biological phosphorus removal, its separation by two-dimensional polyacrylamide gel electrophoresis and the mapping of this metaproteome. Highly expressed protein spots were excised and identified using quadrupole time-of-flight mass spectrometry with de novo peptide sequencing. The proteins isolated were putatively identified as an outer membrane protein (porin), an acetyl coenzyme A acetyltransferase and a protein component of an ABC-type branched-chain amino acid transport system. These proteins possibly stem from the dominant and uncultured Rhodocyclus-type polyphosphate-accumulating organism in the activated sludge. We propose the term 'metaproteomics' for the large-scale characterization of the entire protein complement of environmental microbiota at a given point in time. [less ▲] Detailed reference viewed: 181 (3 UL) |
||