References of "Electronics"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Learning Based Framework for Enhancing Physical Layer Security in Cooperative D2D Network
Ahmad, Noman; Sardar Sidhu, Guftaar Ahmad; Khan, Wali Ullah UL

in Electronics (2022)

Next-generation wireless communication networks demand high spectrum efficiency to serve the requirements of an enormous number of devices over a limited available frequency spectrum. Device-to-device ... [more ▼]

Next-generation wireless communication networks demand high spectrum efficiency to serve the requirements of an enormous number of devices over a limited available frequency spectrum. Device-to-device (D2D) communication with spectrum reuse offers a potential solution to spectrum scarcity. On the other hand, non-orthogonal multiple access (NOMA) as a multiple-access approach has emerged as a key technology to re-use a spectrum among multiple users. A cellular users (CUs) can share their spectrum with D2D users (DUs) and in response, the D2D network can help relay the CU signal to achieve better secrecy from an eavesdropper. Power optimization is known to be a promising technique to enhance system performance in challenging communication environments. This work aimed to enhance the secrecy rate of the CUs where the D2D transmitter (DT) helps in relaying the CU’s message under the amplify and forward (AF) protocol. A power optimization problem is considered under the quality of service constraints in terms of minimum rate requirements at the receivers and maximum power budgets at the transmitters. The problem is a non-convex complex optimization. A deep learning-based solution is proposed and promising results are obtained in terms of the secrecy rate of CU and the rate of D2D users. [less ▲]

Detailed reference viewed: 13 (0 UL)
Full Text
Peer Reviewed
See detailMachine Learning for Radio Resource Management in Multibeam GEO Satellite Systems
Ortiz Gomez, Flor de Guadalupe UL; Lei, Lei UL; Lagunas, Eva UL et al

in Electronics (2022), 11(7), 992

Satellite communications (SatComs) systems are facing a massive increase in traffic demand. However, this increase is not uniform across the service area due to the uneven distribution of users and ... [more ▼]

Satellite communications (SatComs) systems are facing a massive increase in traffic demand. However, this increase is not uniform across the service area due to the uneven distribution of users and changes in traffic demand diurnal. This problem is addressed by using flexible payload architectures, which allow payload resources to be flexibly allocated to meet the traffic demand of each beam. While optimization-based radio resource management (RRM) has shown significant performance gains, its intense computational complexity limits its practical implementation in real systems. In this paper, we discuss the architecture, implementation and applications of Machine Learning (ML) for resource management in multibeam GEO satellite systems. We mainly focus on two systems, one with power, bandwidth, and/or beamwidth flexibility, and the second with time flexibility, i.e., beam hopping. We analyze and compare different ML techniques that have been proposed for these architectures, emphasizing the use of Supervised Learning (SL) and Reinforcement Learning (RL). To this end, we define whether training should be conducted online or offline based on the characteristics and requirements of each proposed ML technique and discuss the most appropriate system architecture and the advantages and disadvantages of each approach. [less ▲]

Detailed reference viewed: 80 (17 UL)
Full Text
Peer Reviewed
See detailDesign and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials
Ali, Luqman; Wang, Cong; Ullah, Inam et al

in Electronics (2021)

This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of ... [more ▼]

This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness. [less ▲]

Detailed reference viewed: 20 (0 UL)
Full Text
Peer Reviewed
See detailForward Link Optimization for the Design of VHTS Satellite Networks
Ortiz Gomez, Flor de Guadalupe UL; Martinez, Ramon; Salas-Natera, Miguel A. et al

in Electronics (2020), 9(3),

The concept of geostationary VHTS (Very High Throughput Satellites) is based on multibeam coverage with intensive frequency and polarization reuse, in addition to the use of larger bandwidths in the ... [more ▼]

The concept of geostationary VHTS (Very High Throughput Satellites) is based on multibeam coverage with intensive frequency and polarization reuse, in addition to the use of larger bandwidths in the feeder links, in order to provide high capacity satellite links at a reduced cost per Gbps in orbit. The dimensioning and design of satellite networks based on VHTS imposes the analysis of multiple trade-offs to achieve an optimal solution in terms of cost, capacity, and the figure of merit of the user terminal. In this paper, we propose a new method for sizing VHTS satellite networks based on an analytical expression of the forward link CINR (Carrier-to-Interference-plus-Noise Ratio) that is used to evaluate the trade-off of different combinations of system parameters. The proposed method considers both technical and commercial requirements as inputs, including the constraints to achieve the optimum solution in terms of the user G/T, the number of beams, and the system cost. The cost model includes both satellite and ground segments. Exemplary results are presented with feeder links using Q/V bands, DVB-S2X and transmission methods based on CCM and VCM (Constant and Variable Coding and Modulation, respectively) in two scenarios with different service areas. [less ▲]

Detailed reference viewed: 28 (2 UL)