References of "Current Molecular Medicine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMiRNA-29: A microRNA family with tumor-suppressing and immune-modulating properties
Schmitt, Martina; Margue, Christiane UL; Behrmann, Iris UL et al

in Current Molecular Medicine (2012), 13(4), 572-585

MicroRNAs (miRNAs) are ubiquitously expressed small, non-coding RNAs that negatively regulate gene expression at a post-transcriptional level. So far, over 1000 miRNAs have been identified in human cells ... [more ▼]

MicroRNAs (miRNAs) are ubiquitously expressed small, non-coding RNAs that negatively regulate gene expression at a post-transcriptional level. So far, over 1000 miRNAs have been identified in human cells and their diverse functions in normal cell homeostasis and many different diseases have been thoroughly investigated during the past decade. MiR-29, one of the most interesting miRNA families in humans to date, consists of three mature members miR-29a, miR-29b and miR-29c, which are encoded in two genetic clusters. Members of this family have been shown to be silenced or down-regulated in many different types of cancer and have subsequently been attributed predominantly tumor-suppressing properties, albeit exceptions have been described where miR-29s have tumor-promoting functions. MiR-29 targets expression of diverse proteins like collagens, transcription factors, methyltransferases and others, which may partake in abnormal migration, invasion or proliferation of cells and may favor development of cancer. Furthermore, members of the miR-29 family can be activated by interferon signaling, which suggests a role in the immune system and in host-pathogen interactions, especially in response to viral infections. In this review, we summarize current knowledge on the genomic organization and regulation of the miR-29 family and we provide an overview of its implication in cancer suppression and promotion as well as in host immune responses. The numerous remarkable properties of these miRNAs and their often altered expression patterns might make the miR-29 family promising biomarkers and therapeutic targets for various diseases in future. © 2013 Bentham Science Publishers. [less ▲]

Detailed reference viewed: 152 (13 UL)
Full Text
Peer Reviewed
See detailFOXP3: required but not sufficient. the role of GARP (LRRC32) as a safeguard of the regulatory phenotype.
Probst-Kepper, M.; Balling, Rudi UL; Buer, J.

in Current Molecular Medicine (2010), 10(6), 533-539

FOXP3 is essential for the development and function of regulatory CD4(+)CD25(hi) T (T(reg)) cells. However, recent evidence suggests that FOXP3 alone is not sufficient to completely explain the regulatory ... [more ▼]

FOXP3 is essential for the development and function of regulatory CD4(+)CD25(hi) T (T(reg)) cells. However, recent evidence suggests that FOXP3 alone is not sufficient to completely explain the regulatory phenotype of these key players in autoimmunity and inflammation: after being activated, conventional human CD4(+) T cells transiently up-regulate FOXP3 without acquiring a regulatory function. Researchers have recently found that glycoprotein A repetitions predominant (GARP, or LRRC32) is a T(reg)-specific receptor that binds latent TGF-beta and dominantly controls FOXP3 and the regulatory phenotype via a positive feedback loop. This finding provides a missing link in our molecular understanding of FOXP3 in T(reg) cells. This viewpoint focuses on GARP as safeguard of FOXP3 and the regulatory phenotype [less ▲]

Detailed reference viewed: 149 (3 UL)