![]() Meyrath, Thierry ![]() in Comptes Rendus. Mathématique (2022), 360 We consider the space of meromorphic functions in the unit disk $\D$ and show that there exists a dense $G_{\delta}$-subset of functions having universal radial limits. Our results complement known ... [more ▼] We consider the space of meromorphic functions in the unit disk $\D$ and show that there exists a dense $G_{\delta}$-subset of functions having universal radial limits. Our results complement known statements about holomorphic functions and further imply the existence of meromorphic functions having maximal cluster sets along certain subsets of $\D$. [less ▲] Detailed reference viewed: 21 (1 UL)![]() Dalmao, Federico ![]() in Comptes Rendus. Mathématique (2015), 353(12), 1141-1145 n this note, we find the asymptotic main term of the variance of the number of roots of Kostlan–Shub–Smale random polynomials and prove a central limit theorem for this number of roots as the degree goes ... [more ▼] n this note, we find the asymptotic main term of the variance of the number of roots of Kostlan–Shub–Smale random polynomials and prove a central limit theorem for this number of roots as the degree goes to infinity. [less ▲] Detailed reference viewed: 145 (14 UL)![]() Rahm, Alexander ![]() in Comptes Rendus. Mathématique (2015), 353(9), 779--784 Detailed reference viewed: 176 (8 UL)![]() Guo, Hongxin ![]() in Comptes Rendus. Mathématique (2013), 351(3-4), 115-118 In this note, based on Hamiltonʼs surface entropy formula, we construct an entropy formula of Perelmanʼs type for the Ricci flow on a closed surface with positive curvature. Similar to Perelmanʼs WW ... [more ▼] In this note, based on Hamiltonʼs surface entropy formula, we construct an entropy formula of Perelmanʼs type for the Ricci flow on a closed surface with positive curvature. Similar to Perelmanʼs WW entropy, the critical point of our entropy is the gradient shrinking soliton; however, there is no conjugate heat equation involved. This shows a close relation between Hamiltonʼs entropy and Perelmanʼs W entropy on closed surfaces. [less ▲] Detailed reference viewed: 69 (2 UL)![]() ; Leroy, Julien ![]() in Comptes Rendus. Mathématique (2012), 350(21-22), 979--983 Detailed reference viewed: 159 (2 UL)![]() Rahm, Alexander ![]() in Comptes Rendus. Mathématique (2012), 350(15-16), 741--744 Detailed reference viewed: 136 (4 UL)![]() Hui, Chun Yin ![]() in Comptes Rendus. Mathématique (2012) Detailed reference viewed: 48 (0 UL)![]() Rahm, Alexander ![]() in Comptes Rendus. Mathématique (2011), 349(11-12), 615--619 Detailed reference viewed: 141 (5 UL)![]() ; Molina Blanco, Santiago ![]() in Comptes Rendus. Mathématique (2009), 347(23-24), 1325--1330 Detailed reference viewed: 96 (0 UL)![]() ; ; Thalmaier, Anton ![]() in Comptes Rendus. Mathématique (2008), 346(13-14), 773-778 Detailed reference viewed: 314 (8 UL)![]() ; ; Molitor-Braun, Carine ![]() in Comptes Rendus. Mathématique (2006), 342(6), 399-404 Detailed reference viewed: 93 (0 UL)![]() ; ; Thalmaier, Anton ![]() in Comptes Rendus. Mathématique (2004), 338(6), 481-486 Detailed reference viewed: 236 (1 UL)![]() ![]() Peccati, Giovanni ![]() in Comptes Rendus. Mathématique (2003), 336(10), 845--850 Detailed reference viewed: 169 (0 UL)![]() ; ; Thalmaier, Anton ![]() in Comptes Rendus. Mathématique (2003), 336(8), 661-666 Detailed reference viewed: 268 (6 UL)![]() ; Thalmaier, Anton ![]() in Comptes Rendus. Mathématique (2003), 336(10), 851-856 Detailed reference viewed: 249 (4 UL)![]() ; Leprévost, Franck ![]() in Comptes Rendus. Mathématique (2003), 336(11), 879-882 Detailed reference viewed: 61 (0 UL)![]() ; ; Thalmaier, Anton ![]() in Comptes Rendus. Mathématique (2002), 335(7), 621-626 Detailed reference viewed: 254 (4 UL) |
||