References of "Circulation Research"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAcute depletion of endothelial beta3-integrin transiently inhibits tumor growth and angiogenesis in mice.
Steri, Veronica; Ellison, Tim S.; Gontarczyk, Aleksander Maksym et al

in Circulation Research (2014), 114(1), 79-91

RATIONALE: The dramatic upregulation of alphavbeta3-integrin that occurs in the vasculature during tumor growth has long suggested that the endothelial expression of this molecule is an ideal target for ... [more ▼]

RATIONALE: The dramatic upregulation of alphavbeta3-integrin that occurs in the vasculature during tumor growth has long suggested that the endothelial expression of this molecule is an ideal target for antiangiogenic therapy to treat cancer. This discovery led to the development of small-molecule inhibitors directed against alphavbeta3-integrin that are currently in clinical trials. In 2002, we reported that beta3-integrin-knockout mice exhibit enhanced tumor growth and angiogenesis. However, as beta3-integrin is expressed by a wide variety of cells, endothelial cell-specific contributions to tumor angiogenesis are muddied by the use of a global knockout of beta3-integrin function. OBJECTIVE: Our aim was to examine the endothelial-specific contribution beta3-integrin makes to tumor growth and angiogenesis. METHODS AND RESULTS: We have crossed beta3-integrin-floxed (beta3-floxed) mice to 2 endothelial-specific Cre models and examined angiogenic responses in vivo, ex vivo, and in vitro. We show that acute depletion of endothelial beta3-integrin inhibits tumor growth and angiogenesis preventatively, but not in already established tumors. However, the effects are transient, and long-term depletion of the molecule is ineffective. Furthermore, long-term depletion of the molecule correlates with many molecular changes, such as reduced levels of focal adhesion kinase expression and a misbalance in focal adhesion kinase phosphorylation, which may lead to a release from the inhibitory effects of decreased endothelial beta3-integrin expression. CONCLUSIONS: Our findings imply that timing and length of inhibition are critical factors that need to be considered when targeting the endothelial expression of beta3-integrin to inhibit tumor growth and angiogenesis. [less ▲]

Detailed reference viewed: 82 (1 UL)
Full Text
Peer Reviewed
See detailTargeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart.
Kimura, Tomomi E.; Jin, Jiawei; Zi, Min et al

in Circulation Research (2010), 106(5), 961-70

RATIONALE: Mitogen-activated protein kinase (MAPK) pathways provide a critical connection between extrinsic and intrinsic signals to cardiac hypertrophy. Extracellular signal-regulated protein kinase (ERK ... [more ▼]

RATIONALE: Mitogen-activated protein kinase (MAPK) pathways provide a critical connection between extrinsic and intrinsic signals to cardiac hypertrophy. Extracellular signal-regulated protein kinase (ERK)5, an atypical MAPK is activated in the heart by pressure overload. However, the role of ERK5 plays in regulating hypertrophic growth and hypertrophy-induced apoptosis is not completely understood. OBJECTIVE: Herein, we investigate the in vivo role and signaling mechanism whereby ERK5 regulates cardiac hypertrophy and hypertrophy-induced apoptosis. METHODS AND RESULTS: We generated and examined the phenotypes of mice with cardiomyocyte-specific deletion of the erk5 gene (ERK5(cko)). In response to hypertrophic stress, ERK5(cko) mice developed less hypertrophic growth and fibrosis than controls. However, increased apoptosis together with upregulated expression levels of p53 and Bad were observed in the mutant hearts. Consistently, we found that silencing ERK5 expression or specific inhibition of its kinase activity using BIX02189 in neonatal rat cardiomyocytes (NRCMs) reduced myocyte enhancer factor (MEF)2 transcriptional activity and blunted hypertrophic responses. Furthermore, the inhibition of MEF2 activity in NRCMs using a non-DNA binding mutant form of MEF2 was found to attenuate the ERK5-regulated hypertrophic response. CONCLUSIONS: These results reveal an important function of ERK5 in cardiac hypertrophic remodeling and cardiomyocyte survival. The role of ERK5 in hypertrophic remodeling is likely to be mediated via the regulation of MEF2 activity. [less ▲]

Detailed reference viewed: 160 (2 UL)
Full Text
Peer Reviewed
See detailCardiac-specific deletion of mkk4 reveals its role in pathological hypertrophic remodeling but not in physiological cardiac growth.
Liu, Wei; Zi, Min; Jin, Jiawei et al

in Circulation Research (2009), 104(7), 905-14

Mitogen-activated protein kinase kinase (MKK)4 is a critical member of the mitogen-activated protein kinase family. It is able to activate the c-Jun NH(2)-terminal protein kinase (JNK) and p38 mitogen ... [more ▼]

Mitogen-activated protein kinase kinase (MKK)4 is a critical member of the mitogen-activated protein kinase family. It is able to activate the c-Jun NH(2)-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase in response to environmental stresses. JNK and p38 are strongly implicated in pathological cardiac hypertrophy and heart failure; however, the regulatory mechanism whereby the upstream kinase MKK4 activates these signaling cascades in the heart is unknown. To elucidate the biological function of MKK4, we generated mice with a cardiac myocyte-specific deletion of mkk4 (MKK4(cko) mice). In response to pressure overload or chronic beta-adrenergic stimulation, upregulated NFAT (nuclear factor of activated T-cell) transcriptional activity associated with exacerbated cardiac hypertrophy and the appearance of apoptotic cardiomyocytes were observed in MKK4(cko) mice. However, when subjected to swimming exercise, MKK4(cko) mice displayed a similar level of physiological cardiac hypertrophy compared to controls (MKK4(f/f)). In addition, we also discovered that MKK4 expression was significantly reduced in heart failure patients. In conclusion, this study demonstrates for the first time that MKK4 is a key mediator which prevents the transition from an adaptive response to maladaptive cardiac hypertrophy likely involving the regulation of the NFAT signaling pathway. [less ▲]

Detailed reference viewed: 210 (1 UL)
Full Text
Peer Reviewed
See detailConditional neuronal nitric oxide synthase overexpression impairs myocardial contractility.
Burkard, Natalie; Rokita, Adam G.; Kaufmann, Susann G. et al

in Circulation Research (2007), 100(3), 32-44

The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are ... [more ▼]

The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are contradictory and do not pay tribute to the fact that probably spatial confinement of the nNOS enzyme is of major importance. We hypothesize that the close proximity of nNOS and certain effector molecules like L-type Ca(2+)-channels has an impact on myocardial contractility. To test this, we generated a new transgenic mouse model allowing conditional, myocardial specific nNOS overexpression. Western blot analysis of transgenic nNOS overexpression showed a 6-fold increase in nNOS protein expression compared with noninduced littermates (n=12; P<0.01). Measuring of total NOS activity by conversion of [(3)H]-l-arginine to [(3)H]-l-citrulline showed a 30% increase in nNOS overexpressing mice (n=18; P<0.05). After a 2 week induction, nNOS overexpression mice showed reduced myocardial contractility. In vivo examinations of the nNOS overexpressing mice revealed a 17+/-3% decrease of +dp/dt(max) compared with noninduced mice (P<0.05). Likewise, ejection fraction was reduced significantly (42% versus 65%; n=15; P<0.05). Interestingly, coimmunoprecipitation experiments indicated interaction of nNOS with SR Ca(2+)ATPase and additionally with L-type Ca(2+)- channels in nNOS overexpressing animals. Accordingly, in adult isolated cardiac myocytes, I(Ca,L) density was significantly decreased in the nNOS overexpressing cells. Intracellular Ca(2+)-transients and fractional shortening in cardiomyocytes were also clearly impaired in nNOS overexpressing mice versus noninduced littermates. In conclusion, conditional myocardial specific overexpression of nNOS in a transgenic animal model reduced myocardial contractility. We suggest that nNOS might suppress the function of L-type Ca(2+)-channels and in turn reduces Ca(2+)-transients which accounts for the negative inotropic effect. [less ▲]

Detailed reference viewed: 114 (1 UL)
Full Text
Peer Reviewed
See detailInhibition of nuclear import of calcineurin prevents myocardial hypertrophy.
Hallhuber, Matthias; Burkard, Natalie; Wu, Rongxue et al

in Circulation Research (2006), 99(6), 626-35

The time that transcription factors remain nuclear is a major determinant for transcriptional activity. It has recently been demonstrated that the phosphatase calcineurin is translocated to the nucleus ... [more ▼]

The time that transcription factors remain nuclear is a major determinant for transcriptional activity. It has recently been demonstrated that the phosphatase calcineurin is translocated to the nucleus with the transcription factor nuclear factor of activated T cells (NF-AT). This study identifies a nuclear localization sequence (NLS) and a nuclear export signal (NES) in the sequence of calcineurin. Furthermore we identified the nuclear cargo protein importinbeta(1) to be responsible for nuclear translocation of calcineurin. Inhibition of the calcineurin/importin interaction by a competitive peptide (KQECKIKYSERV), which mimicked the calcineurin NLS, prevented nuclear entry of calcineurin. A noninhibitory control peptide did not interfere with the calcineurin/importin binding. Using this approach, we were able to prevent the development of myocardial hypertrophy. In angiotensin II-stimulated cardiomyocytes, [(3)H]-leucine incorporation (159%+/-9 versus 111%+/-11; P<0.01) and cell size were suppressed significantly by the NLS peptide compared with a control peptide. The NLS peptide inhibited calcineurin/NF-AT transcriptional activity (227%+/-11 versus 133%+/-8; P<0.01), whereas calcineurin phosphatase activity was unaffected (298%+/-9 versus 270%+/-11; P=NS). We conclude that calcineurin is not only capable of dephosphorylating NF-AT, thus enabling its nuclear import, but the presence of calcineurin in the nucleus is also important for full NF-AT transcriptional activity. [less ▲]

Detailed reference viewed: 114 (1 UL)
Full Text
Peer Reviewed
See detailOverexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats.
Hammes, A.; Oberdorf-Maass, S.; Rother, T. et al

in Circulation Research (1998), 83(9), 877-88

The plasma membrane calmodulin-dependent calcium ATPase (PMCA) is a calcium-extruding enzyme controlling Ca2+ homeostasis in nonexcitable cells. However, its function in the myocardium is unclear because ... [more ▼]

The plasma membrane calmodulin-dependent calcium ATPase (PMCA) is a calcium-extruding enzyme controlling Ca2+ homeostasis in nonexcitable cells. However, its function in the myocardium is unclear because of the presence of the Na+/Ca2+ exchanger. We approached the question of the physiological function of the calcium pump using a transgenic "gain of function" model. Transgenic rat lines carrying the human PMCA 4 cDNA under control of the ventricle-specific myosin light chain-2 promoter were established, and expression in the myocardium was ascertained at the mRNA, protein, and functional levels. In vivo hemodynamic measurements in adult homozygous animals showed no differences in baseline and increased cardiac performance recruited by volume overload compared with controls. No differences between transgenic and control cardiomyocytes were found in patch clamp voltage dependence, activation/inactivation behavior of the L-type Ca2+ current, or fast [Ca2+]i transients (assessed by the Fura-2 method). To test whether the PMCA might be involved in processes other than beat-to-beat regulation of contraction/relaxation, we compared growth processes of neonatal transgenic and control cardiomyocytes. A 1.6- and 2.3-fold higher synthesis rate of total protein was seen in cells from transgenic animals compared with controls on incubation with 2% FCS for 24 hours and 36 hours, respectively. An effect of similar magnitude was observed using 20 micromol/L phenylephrine. A 1.4-fold- and 2.0-fold-higher protein synthesis peak was seen in PMCA-overexpressing cardiomyocytes after stimulation with isoproterenol for 12 hours and 24 hours, respectively. Because pivotal parts of the alpha- and beta-adrenergic signal transduction pathways recently have been localized to caveolae, we tested the hypothesis that the PMCA might alter the amplitude of alpha- and beta-adrenergic growth signals by virtue of its localization in caveolae. Biochemical as well as immunocytochemical studies suggested that the PMCA in large part was colocalized with caveolin 3 in caveolae of cardiomyocytes. These results indicate that the sarcolemmal Ca2+-pump has little relevance for beat-to-beat regulation of contraction/relaxation in adult animals but likely plays a role in regulating myocardial growth, possibly through modulation of caveolar signal transduction. [less ▲]

Detailed reference viewed: 122 (1 UL)
Full Text
Peer Reviewed
See detailGap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions.
Bastide, B.; Neyses, Ludwig UL; Ganten, D. et al

in Circulation Research (1993), 73(6), 1138-49

Gap junction channels consisting of connexin protein mediate electrical coupling between cardiac cells. Expression of two connexins, connexin40 (Cx40) and connexin43 (Cx43), has been studied in ... [more ▼]

Gap junction channels consisting of connexin protein mediate electrical coupling between cardiac cells. Expression of two connexins, connexin40 (Cx40) and connexin43 (Cx43), has been studied in ventricular myocytes from normal and hypertensive rats. Polyclonal affinity-purified rabbit antibodies to Cx43 and Cx40 have been used for immunohistochemical analysis on frozen sections from rat heart. These studies revealed coexpression of Cx43 and Cx40 in ventricular myocytes. In addition, Cx40 is preferentially expressed in three distinct regions: first, in the endothelial layer of the heart blood vessels but not in the smooth muscle layer of the arteries; second, in the ventricular conductive myocardium, particularly in the atrioventricular bundle and bundle branches, where Cx43 is not observed; and third, in the myocyte layers close to the ventricular cavities. These results suggest that Cx40 is preferentially expressed in the fast conducting areas of myocardial tissue. Expression of both Cx40 and Cx43 was also found in immunoblots from normal and hypertensive rat myocardiocytes. Under hypertensive conditions (ie, in spontaneous hypertensive rats and in transgenic rats that exhibit hypertension due to expression of an exogenous renin gene), we found a 3.1-fold increase in Cx40 expression, compared with normal myocardium. Furthermore, we detected a 3.3-fold decrease in Cx43 protein level in transgenic hypertensive rats. The coexpression of Cx40 and Cx43 proteins in rat myocytes, their spatial distribution, and the increased amount of Cx40 protein during cardiac hypertrophy suggest that Cx40 may be involved in mediating fast conduction under normal and pathological conditions. The increased expression of Cx40 in hypertrophic heart may be a compensatory mechanism to increase conduction velocity. [less ▲]

Detailed reference viewed: 203 (1 UL)