References of "CRYSTENGCOMM"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSingle crystal growth of BaZrO3 from the melt at 2700 degrees C using optical floating zone technique and growth prospects from BaB2O4 flux at 1350 degrees C
Xin, Cong; Veber, Philippe; Guennou, Mael UL et al

in CRYSTENGCOMM (2019), 21(3), 502-512

We report the growth of BaZrO3 single crystals by the optical floating zone technique and the investigation on its flux growth using BaB2O4 as a solvent. 6 mm long colorless and transparent single ... [more ▼]

We report the growth of BaZrO3 single crystals by the optical floating zone technique and the investigation on its flux growth using BaB2O4 as a solvent. 6 mm long colorless and transparent single crystals were obtained with a mirror furnace without the need for post-treatment annealing. Its properties are determined and compared with those of two commercial crystals grown by the tri-arc Czochralski method. The chemical composition was investigated using glow discharge mass spectrometry (GDMS) and secondary ion mass spectrometry (SIMS), which indicate minor impurities of Sr, Hf, Ca and Ti, with maximal concentrations for Sr and Hf in the range of 0.3-0.5 at. The optical band gap determined by UV-visible spectroscopy is found to be similar to 4.8 eV and indicates the high quality of the BaZrO3 crystals grown by the optical floating zone technique. Raman spectroscopy at ambient conditions and at low temperatures down to 4.2 K reveals a relatively sharp second-order spectrum and does not reveal any structural phase transition. Prospective high-temperature solution growth using BaB2O4 self-flux was investigated and led to 150-200 mu m BaZrO3 crystals. This solvent opens the way to grow BaZrO3 at half its melting point by the flux method. [less ▲]

Detailed reference viewed: 84 (8 UL)
Full Text
Peer Reviewed
See detailPhase transition between cubic and monoclinic polymorphs of the tetracyanoethylene crystal: the role of temperature and kinetics
Schatschneider, Bohdan; Liang, Jian-Jie; Jezowski, Sebastian et al

in CRYSTENGCOMM (2012), 14(14), 4656-4663

Prediction of the relative stabilities and phase transition behavior of molecular crystalline polymorphs is highly coveted as distinct phases can possess different physical and chemical properties while ... [more ▼]

Prediction of the relative stabilities and phase transition behavior of molecular crystalline polymorphs is highly coveted as distinct phases can possess different physical and chemical properties while having similar energies. Crystalline tetracyanoethylene (TCNE, C6N4) is known to exhibit rich solid state phase behavior under different thermodynamic conditions, as demonstrated by a wealth of experimental studies on this system. Despite this fact, the role of temperature and kinetics on the phase diagram of TCNE remains poorly understood. Here, first-principles calculations and high-resolution Fourier-transformed infrared (HR-FTIR) spectroscopy experiments are used to study the relative stabilities of the cubic and monoclinic phases of TCNE as a function of temperature. Specifically, density-functional theory with the van der Waals interactions method of Tkatchenko and Scheffler (DFT+vdW) is employed. The accuracy of this approach is demonstrated by the excellent agreement between the calculated and experimental structures. We find that the cubic phase is the most stable polymorph at 0 K, but becomes less favorable than the monoclinic phase at 160 K. This temperature-induced phase transition is explained on the basis of varying close contacts and vibrational entropies as a function of temperature. These findings are N vibrons. [less ▲]

Detailed reference viewed: 168 (1 UL)