References of "British Journal of Pharmacology"
     in
Bookmark and Share    
Peer Reviewed
See detailRosuvastatin treatment protects against nitrate-induced oxidative stress in eNOS knockout mice: implication of the NAD(P)H oxidase pathway
Otto, A.; Fontaine, J.; Tschirhart, Eric UL et al

in British Journal of Pharmacology (2006), 148(4), 544-52

Nitrate tolerance is associated with an enhanced superoxide anion (O(2)(-)) production and may be attenuated by statins as they interact with the two main endothelial NO synthase (eNOS) and NAD(P)H ... [more ▼]

Nitrate tolerance is associated with an enhanced superoxide anion (O(2)(-)) production and may be attenuated by statins as they interact with the two main endothelial NO synthase (eNOS) and NAD(P)H oxidase pathways involved in this oxidative stress. Groups of wild-type (wt, C57Bl/6J) and eNOS knock-out mice (eNOS(-/-)) received rosuvastatin (20 mg kg(-1) day(-1) p.o.) for 5 weeks and a cotreatment with the statin plus nitroglycerin (NTG; 30 mg kg(-1) day(-1), subcutaneous injections b.i.d.) for the last 4 days. Another group received only NTG (30 mg kg(-1) d(-1), b.i.d. for 4 days) and finally control mice from both strains received no treatment. Rings of thoracic aortas from these groups were studied in organ baths. Relaxations to NTG (0.1 nM-0.1 mM) were determined on thromboxane analogue (U44619)-precontracted rings and O(2)(-) production (RLU 5 s(-1) mg(-1) of total protein content) was assessed in aorta homogenates with the lucigenin-enhanced chemiluminescence technique. Reverse transcriptase-polymerase chain reaction analysis was performed on aortas from both mice strains. In vivo NTG treatment induced a significant rightward shift of the concentration-effect curve to NTG compared to control group. There was, however, no cross-tolerance with non-nitrate sources of NO (unaltered response to acetylcholine in wt group). The rosuvastatin + NTG cotreatment was able to protect against the development of nitrate tolerance in both mice strains and L-mevalonate abolished this protective effect of rosuvastatin. In vivo treatment with apocynin, a purported NAD(P)H oxidase inhibitor, also produced a similar protection to that observed with rosuvastatin in both strains.Superoxide anion formation was increased after NTG treatment in both mice strains and the rosuvastatin + NTG cotreatment was able to reduce that production. Moreover, rosuvastatin treatment abolished the increase in gp91phox mRNA (an endothelial membrane NAD(P)H oxidase subunit) expression induced by in vivo exposure to NTG. These findings suggest that long-term rosuvastatin treatment protects against nitrate tolerance by counteracting NTG-induced increase in O(2)(-) production, probably via a direct interaction with the NAD(P)H oxidase pathway. [less ▲]

Detailed reference viewed: 95 (0 UL)
Peer Reviewed
See detailPertussis toxin-sensitive G(i)-proteins and intracellular calcium sensitivity of vasoconstriction in the intact rat tail artery
Spitzbarth-Régrigny, E.; Petitcolin, M. A.; Bueb, Jean-Luc UL et al

in British Journal of Pharmacology (2000), 131(7), 1337-44

1. We studied the involvement of pertussis toxin (PTX)-sensitive G-proteins in the sensitivity of arterial constriction to intracellular calcium ([Ca(2+)](i)) mobilization. 2. Vasoconstriction was ... [more ▼]

1. We studied the involvement of pertussis toxin (PTX)-sensitive G-proteins in the sensitivity of arterial constriction to intracellular calcium ([Ca(2+)](i)) mobilization. 2. Vasoconstriction was measured in vitro in perfused, de-endothelialized rat tail arteries loaded with the calcium-sensitive dye, fura-2 and treated or not with PTX (30 - 1000 ng ml(-1)). Arteries were stimulated with noradrenaline (NA, 0.1 - 100 microM) or KCl (15 - 120 mM). 3. KCl elicited a smaller vasoconstrictor response (E(max)=94+/-8 mmHg) than NA (E(max)=198+/-9 mmHg) although [Ca(2+)](i) mobilization was similar (E(max)=123+/-8 and 135+/-7 nM for KCl and NA, respectively). PTX (1000 ng ml(-1)) had no effect on [Ca(2+)](i) mobilization but lowered NA- (but not KCl-) induced vasoconstriction (E(max)=118+/-7 mmHg). 4. G(i/o)-proteins were revealed by immunoblotting with anti-G(i alpha) and anti-G(o alpha) antibodies in membranes prepared from de-endothelialized tail arteries. [alpha(32)P]-ADP-ribosylation of G-proteins by PTX (1000 ng ml(-1)) was demonstrated in the intact rat tail artery (pixels in the absence of PTX: 3150, presence: 25053). 5. In conclusion, we suggest that smooth muscle cells possess a PTX-sensitive G(i)-protein-mediated intracellular pathway which amplifies [Ca(2+)](i) sensitivity of contraction in the presence of agonists such as NA. [less ▲]

Detailed reference viewed: 178 (0 UL)
Full Text
Peer Reviewed
See detailEffects of moexiprilat on oestrogen-stimulated cardiac fibroblast growth.
Grohe, C.; Kahlert, S.; Lobbert, K. et al

in British journal of pharmacology (1997), 121(7), 1350-4

1. The effects of 2-2-(1-(ethoxycarbonyl)-3-phenylpropyl)-[amino-oxopropyl]-6,7-dimethoxy- 1,2,3,4-tetrahydroisoquinoline-3 carboxylic acid (moexiprilat), 17beta-oestradiol (E2), oestrone (ES) and ... [more ▼]

1. The effects of 2-2-(1-(ethoxycarbonyl)-3-phenylpropyl)-[amino-oxopropyl]-6,7-dimethoxy- 1,2,3,4-tetrahydroisoquinoline-3 carboxylic acid (moexiprilat), 17beta-oestradiol (E2), oestrone (ES) and angiotensin II (AII) on growth and activation of oestrogen receptors and the immediate-early gene egr-1 were investigated in neonatal rat cardiac fibroblasts of female and male origin. 2. In BrdU proliferation assays, oestrone (10(-7)- 10(-9) M) stimulated cardiac fibroblast growth in a concentration-dependent fashion (maximum at 10(-7) M, 4.0 fold +/- 0.14 in female and 3.1 fold +/- 0.06 in male cells, n=9, P<0.05), while E2 (10(-7)-10(-9) M) had no effect. Moexiprilat (10(-7)M) completely inhibited oestrone-induced cardiac fibroblast growth. 3. Angiotensin II (10(-7) M) induced cardiac fibroblast growth (female 4.1 fold +/- 0.1/male 3.9 fold +/- 0.2; n=9, P<0.05). Angiotensin II induced oestrogen receptor (maximum 21.8 fold at 60 min) and egr-1 (maximum 47.5 fold at 60 min) expression in a time-dependent fashion. 4. In immunoblot experiments, oestrogen activated oestrogen receptor (ES: 12.8 fold +/- 2.0; E2: 14.7 fold +/- 4.9; n=3, P<0.05) and egr-1 (ES: 5.1 fold, +/- 0.24; E2: 3.8 fold, +/- 0.25; n=3, P<0.05) expression. The induction of oestrogen receptor and egr-1 protein expression was time-dependent and inhibited by moexiprilat. 5. Our results show that oestrone and 17beta-oestradiol reveal a significant difference in their potential to activate cardiac fibroblast growth in female and male cells and that oestrone-stimulated growth is inhibited by moexiprilat. The inhibition of oestrone-stimulated cardiac fibroblast growth by moexiprilat may contribute to the beneficial effects seen in postmenopausal women with hypertensive heart disease treated with ACE inhibitors. [less ▲]

Detailed reference viewed: 131 (0 UL)