References of "Biochemical Society Transactions"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPromotion of cancer cell stemness by Ras
Chippalkatti, Rohan UL; Abankwa, Daniel UL

in Biochemical Society Transactions (2021)

Cancer stem cells (CSC) may be the most relevant and elusive cancer cell population, as they have the exquisite ability to seed new tumors. It is plausible, that highly mutated cancer genes, such as KRAS ... [more ▼]

Cancer stem cells (CSC) may be the most relevant and elusive cancer cell population, as they have the exquisite ability to seed new tumors. It is plausible, that highly mutated cancer genes, such as KRAS, are functionally associated with processes contributing to the emergence of stemness traits. In this review, we will summarize the evidence for a stemness driving activity of oncogenic Ras. This activity appears to differ by Ras isoform, with the highly mutated KRAS having a particularly profound impact. Next to established stemness pathways such as Wnt and Hedgehog (Hh), the precise, cell cycle dependent orchestration of the MAPK-pathway appears to relay Ras activation in this context. We will examine how non-canonical activities of K-Ras4B (hereafter K-Ras) could be enabled by its trafficking chaperones calmodulin and PDE6D/PDEδ. Both dynamically localize to the cellular machinery that is intimately linked to cell fate decisions, such as the primary cilium and the centrosome. Thus, it can be speculated that oncogenic K-Ras disrupts fundamental polarized signaling and asymmetric apportioning processes that are necessary during cell differentiation. [less ▲]

Detailed reference viewed: 158 (4 UL)
Full Text
Peer Reviewed
See detailTowards the routine use of in silico screenings for drug discovery using metabolic modelling
Bintener, Tamara Jean Rita UL; Pires Pacheco, Maria Irene UL; Sauter, Thomas UL

in Biochemical Society Transactions (2020)

Currently, the development of new effective drugs for cancer therapy is not only hindered by development costs, drug efficacy, and drug safety but also by the rapid occurrence of drug resistance in cancer ... [more ▼]

Currently, the development of new effective drugs for cancer therapy is not only hindered by development costs, drug efficacy, and drug safety but also by the rapid occurrence of drug resistance in cancer. Hence, new tools are needed to study the underlying mechanisms in cancer. Here, we discuss the current use of metabolic modelling approaches to identify cancer-specific metabolism and find possible new drug targets and drugs for repurposing. Furthermore, we list valuable resources that are needed for the reconstruction of cancer-specific models by integrating various available datasets with genome-scale metabolic reconstructions using model-building algorithms. We also discuss how new drug targets can be determined by using gene essentiality analysis, an in silico method to predict essential genes in a given condition such as cancer and how synthetic lethality studies could greatly benefit cancer patients by suggesting drug combinations with reduced side effects. [less ▲]

Detailed reference viewed: 93 (5 UL)
Full Text
Peer Reviewed
See detailThe regulatory function of plasma-membrane Ca(2+)-ATPase (PMCA) in the heart.
Oceandy, D.; Stanley, P. J.; Cartwright, E. J. et al

in Biochemical Society transactions (2007), 35(Pt 5), 927-30

The PMCA (plasma-membrane Ca(2+)-ATPase) is a ubiquitously expressed calcium-extruding enzymatic pump important in the control of intracellular calcium concentration. Unlike in non-excitable cells, where ... [more ▼]

The PMCA (plasma-membrane Ca(2+)-ATPase) is a ubiquitously expressed calcium-extruding enzymatic pump important in the control of intracellular calcium concentration. Unlike in non-excitable cells, where PMCA is the only system for calcium extrusion, in excitable cells, such as cardiomyocytes, PMCA has been shown to play only a minor role in calcium homoeostasis compared with the NCX (sodium/calcium exchanger), another system of calcium extrusion. However, increasing evidence points to an important role for PMCA in signal transduction; of particular interest in cardiac physiology is the modulation of nNOS (neuronal nitric oxide synthase) by isoform 4b of PMCA. In the present paper, we will discuss recent advances that support a key role for PMCA4 in modulating the nitric oxide signalling pathway in the heart. [less ▲]

Detailed reference viewed: 123 (0 UL)
Peer Reviewed
See detailAPO-I-mediated apoptosis in normal and malignant lymphocytes
Dhein, J.; Behrmann, Iris UL; Daniel, P. T. et al

in Biochemical Society Transactions (1995), 22(3), 598-600

Detailed reference viewed: 91 (0 UL)