References of "Annals of clinical and translational neurology"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailUsing automated electrode localization to guide stimulation management in DBS
Petersen, Mikkel V.; Husch, Andreas UL; Parsons, Christine E. et al

in Annals of Clinical and Translational Neurology (2018), 0(0),

Abstract Deep Brain Stimulation requires extensive postoperative testing of stimulation parameters to achieve optimal outcomes. Testing is typically not guided by neuroanatomical information on electrode ... [more ▼]

Abstract Deep Brain Stimulation requires extensive postoperative testing of stimulation parameters to achieve optimal outcomes. Testing is typically not guided by neuroanatomical information on electrode contact locations. To address this, we present an automated reconstruction of electrode locations relative to the treatment target, the subthalamic nucleus, comparing different targeting methods: atlas‐, manual‐, or tractography‐based subthalamic nucleus segmentation. We found that most electrode contacts chosen to deliver stimulation were closest or second closest to the atlas‐based subthalamic nucleus target. We suggest that information on each electrode contact's location, which can be obtained using atlas‐based methods, might guide clinicians during postoperative stimulation testing. [less ▲]

Detailed reference viewed: 111 (3 UL)
Full Text
Peer Reviewed
See detailPlatelet mitochondrial membrane potential in Parkinson's disease.
Antony, Paul UL; Boyd, Olga UL; Trefois, Christophe UL et al

in Annals of clinical and translational neurology (2015), 2(1), 67-73

OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial ... [more ▼]

OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial function at the level of selected enzymatic activities in peripheral tissues have produced conflicting data. We considered the electron transport chain as a complex system with mitochondrial membrane potential as an integrative indicator for mitochondrial fitness. METHODS: Twenty-five IPD patients (nine females; mean disease duration, 6.2 years) and 16 healthy age-matched controls (12 females) were recruited. Live platelets were purified using magnetic-activated cell sorting (MACS) and single-cell data on mitochondrial membrane potential (Deltapsi) were measured by cytometry and challenged with a protonophore agent. RESULTS: Functional mitochondrial membrane potential was detected in all participants. The challenge test reduced the membrane potential in all IPD patients and controls (P < 0.001). However, the response to the challenge was not significantly different between patients and controls. INTERPRETATION: While the reported protonophore challenge assay is a valid marker of overall mitochondrial function in live platelets, intact mitochondrial membrane potential in platelets derived from IPD patients suggests that presumed mitochondrial enzymatic deficiencies are compensable in this cell type. In consequence, mitochondrial membrane potential in platelets cannot be used as a diagnostic biomarker for nonstratified IPD but should be further explored in potential Parkinson's disease subtypes and tissues with higher energy demands. [less ▲]

Detailed reference viewed: 173 (6 UL)