References of "Advanced Optical Materials"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBio-assisted tailored synthesis of plasmonic silver nanorings and site-selective deposition on graphene arrays
Giovannini, Giorgia; Ardini, Matteo; Maccaferri, Nicolò UL et al

in Advanced Optical Materials (in press)

Detailed reference viewed: 105 (8 UL)
Full Text
Peer Reviewed
See detailThrough the Spherical Looking-Glass: Asymmetry Enables Multicolored Internal Reflection in Cholesteric Liquid Crystal Shells
Geng, Yong UL; Jang, Ju-Hyun; Noh, Kyung-Gyu et al

in Advanced Optical Materials (2017), 6(1), 1700923

Spheres of cholesteric liquid crystal generate dynamic patterns due to selec- tive reflection from a helical structure subject to continuously curved bounda- ries. So far the patterns are investigated ... [more ▼]

Spheres of cholesteric liquid crystal generate dynamic patterns due to selec- tive reflection from a helical structure subject to continuously curved bounda- ries. So far the patterns are investigated exclusively as function of reflections at the sphere exterior. Here it is shown that the cholesteric shells in a microfluidics produced double emulsion enable also a sequence of internal reflections if the shells have sufficiently thin top and thick bottom. While such asymmetry is promoted by buoyancy when the internal droplet has lower density than the liquid crystal, the elasticity of the cholesteric helix prefers a symmetric shell geometry, acting against gravity. This subtle balance can hide the internal reflections for long time. Eventually, however, the asymmetry is established, revealing a new class of photonic patterns characterized by colored sharp concentric rings. With the complete knowledge of the diverse light-reflecting behavior of cholesteric liquid crystal shells, and utilizing the tunability of the structure period by, e.g., temperature, electric field, or expo- sure to various chemical species as well as polymer stabilization for making the shells long-term stable, they may be developed into remarkable new optical elements for photonics, sensing, or security pattern generation. [less ▲]

Detailed reference viewed: 135 (2 UL)