![]() ; Michels, Andreas ![]() in Scientific Reports (2016), 6 Using analytical expressions for the magnetization textures of thin submicron-sized magnetic cylinders in vortex state, we derive closed-form algebraic expressions for the ensuing small-angle neutron ... [more ▼] Using analytical expressions for the magnetization textures of thin submicron-sized magnetic cylinders in vortex state, we derive closed-form algebraic expressions for the ensuing small-angle neutron scattering (SANS) cross sections. Specifically, for the perpendicular and parallel scattering geometries, we have computed the cross sections for the case of small vortex-center displacements without formation of magnetic charges on the side faces of the cylinder. The results represent a significant qualitative and quantitative step forward in SANS-data analysis on isolated magnetic nanoparticle systems, which are commonly assumed to be homogeneously or stepwise-homogeneously magnetized. We suggest a way to extract the fine details of the magnetic vortex structure during the magnetization process from the SANS measurements in order to help resolving the long-standing question of the magnetic vortex displacement mode. [less ▲] Detailed reference viewed: 153 (7 UL)![]() ; ; et al in Scientific reports (2015), 5 Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability ... [more ▼] Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different. [less ▲] Detailed reference viewed: 136 (13 UL)![]() Nguyen, Thanh-Phuong ![]() in Scientific Reports (2015), 5 Dementia is a neurodegenerative condition of the brain in which there is a progressive and permanent loss of cognitive and mental performance. Despite the fact that the number of people with dementia ... [more ▼] Dementia is a neurodegenerative condition of the brain in which there is a progressive and permanent loss of cognitive and mental performance. Despite the fact that the number of people with dementia worldwide is steadily increasing and regardless of the advances in the molecular characterization of the disease, current medical treatments for dementia are purely symptomatic and hardly effective. We present a novel multi-relational association mining method that integrates the huge amount of scientific data accumulated in recent years to predict potential novel targets for innovative therapeutic treatment of dementia. Owing to the ability of processing large volumes of heterogeneous data, our method achieves a high performance and predicts numerous drug targets including several serine threonine kinase and a G-protein coupled receptor. The predicted drug targets are mainly functionally related to metabolism, cell surface receptor signaling pathways, immune response, apoptosis, and long-term memory. Among the highly represented kinase family and among the G-protein coupled receptors, DLG4 (PSD-95), and the bradikynin receptor 2 are highlighted also for their proposed role in memory and cognition, as described in previous studies. These novel putative targets hold promises for the development of novel therapeutic approaches for the treatment of dementia. [less ▲] Detailed reference viewed: 214 (22 UL)![]() ; ; et al in Scientific reports (2015), 5 Phosphospecific enrichment techniques and mass spectrometry (MS) are essential tools for comprehending the cellular phosphoproteome. Here, we report a fast and simple approach for low sequence-bias ... [more ▼] Phosphospecific enrichment techniques and mass spectrometry (MS) are essential tools for comprehending the cellular phosphoproteome. Here, we report a fast and simple approach for low sequence-bias phosphoserine (pS) peptide capture and enrichment that is compatible with low biological or clinical sample input. The approach exploits molecularly imprinted polymers (MIPs, "plastic antibodies") featuring tight neutral binding sites for pS or pY that are capable of cross-reacting with phosphopeptides of protein proteolytic digests. The versatility of the resulting method was demonstrated with small samples of whole-cell lysate from human embryonic kidney (HEK) 293T cells, human neuroblastoma SH-SY5Y cells, mouse brain or human cerebrospinal fluid (CSF). Following pre-fractionation of trypsinized proteins by strong cation exchange (SCX) chromatography, pS-MIP enrichment led to the identification of 924 phosphopeptides in the HEK 293T whole-cell lysate, exceeding the number identified by TiO2-based enrichment (230). Moreover, the phosphopeptides were extracted with low sequence bias and showed no evidence for the characteristic preference of TiO2 for acidic amino acids (aspartic and glutamic acid). Applying the method to human CSF led to the discovery of 47 phosphopeptides belonging to 24 proteins and revealed three previously unknown phosphorylation sites. [less ▲] Detailed reference viewed: 160 (9 UL)![]() ; Bolognin, Silvia ![]() ![]() in Scientific Reports (2015), 5 Detailed reference viewed: 325 (26 UL)![]() ![]() ; ; Grünewald, Anne ![]() in Scientific reports (2015), 5 Oxidative phosphorylation defects in human tissues are often challenging to quantify due to a mosaic pattern of deficiency. Biochemical assays are difficult to interpret due to the varying enzyme ... [more ▼] Oxidative phosphorylation defects in human tissues are often challenging to quantify due to a mosaic pattern of deficiency. Biochemical assays are difficult to interpret due to the varying enzyme deficiency levels found in individual cells. Histochemical analysis allows semi-quantitative assessment of complex II and complex IV activities, but there is no validated histochemical assay to assess complex I activity which is frequently affected in mitochondrial pathology. To help improve the diagnosis of mitochondrial disease and to study the mechanisms underlying mitochondrial abnormalities in disease, we have developed a quadruple immunofluorescent technique enabling the quantification of key respiratory chain subunits of complexes I and IV, together with an indicator of mitochondrial mass and a cell membrane marker. This assay gives precise and objective quantification of protein abundance in large numbers of individual muscle fibres. By assessing muscle biopsies from subjects with a range of different mitochondrial genetic defects we have demonstrated that specific genotypes exhibit distinct biochemical signatures in muscle, providing evidence for the diagnostic use of the technique, as well as insight into the underlying molecular pathology. Stringent testing for reproducibility and sensitivity confirms the potential value of the technique for mechanistic studies of disease and in the evaluation of therapeutic approaches. [less ▲] Detailed reference viewed: 137 (21 UL)![]() ; ; Gonzalez Cano, Laura ![]() in Scientific Reports (2015) Detailed reference viewed: 262 (11 UL)![]() Laczny, Cedric Christian ![]() ![]() in Scientific Reports (2014) The visualization of metagenomic data, especially without prior taxonomic identification of reconstructed genomic fragments, is a challenging problem in computational biology. An ideal visualization ... [more ▼] The visualization of metagenomic data, especially without prior taxonomic identification of reconstructed genomic fragments, is a challenging problem in computational biology. An ideal visualization method should, among others, enable clear distinction of congruent groups of sequences of closely related taxa, be applicable to fragments of lengths typically achievable following assembly, and allow the efficient analysis of the growing amounts of community genomic sequence data. Here, we report a scalable approach for the visualization of metagenomic data that is based on nonlinear dimension reduction via Barnes-Hut Stochastic Neighbor Embedding of centered log-ratio transformed oligonucleotide signatures extracted from assembled genomic sequence fragments. The approach allows for alignment-free assessment of the data-inherent taxonomic structure, and it can potentially facilitate the downstream binning of genomic fragments into uniform clusters reflecting organismal origin. We demonstrate the performance of our approach by visualizing community genomic sequence data from simulated as well as groundwater, human-derived and marine microbial communities. [less ▲] Detailed reference viewed: 287 (22 UL)![]() ; Wirtz, Ludger ![]() in Scientific Reports (2013), 3 Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a ... [more ▼] Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth. [less ▲] Detailed reference viewed: 175 (4 UL)![]() Chenu, Aurélia ![]() in Scientific Reports (2013) Detailed reference viewed: 26 (0 UL) |
||