References of "Physical Review. B"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDynamic response functions and helical gaps in interacting Rashba nanowires with and without magnetic fields
Pedder, Christopher UL; Meng, Tobias; Tiwari, Rakesh et al

in Physical Review. B (2016), 94(24), 245414

A partially gapped spectrum due to the application of a magnetic field is one of the main probes of Rashba spin-orbit coupling in nanowires. Such a ``helical gap'' manifests itself in the linear ... [more ▼]

A partially gapped spectrum due to the application of a magnetic field is one of the main probes of Rashba spin-orbit coupling in nanowires. Such a ``helical gap'' manifests itself in the linear conductance, as well as in dynamic response functions such as the spectral function, the structure factor, or the tunnelling density of states. In this paper, we investigate theoretically the signature of the helical gap in these observables with a particular focus on the interplay between Rashba spin-orbit coupling and electron-electron interactions. We show that in a quasi-one-dimensional wire, interactions can open a helical gap even without magnetic field. We calculate the dynamic response functions using bosonization, a renormalization group analysis, and the exact form factors of the emerging sine-Gordon model. For special interaction strengths, we verify our results by refermionization. We show how the two types of helical gaps, caused by magnetic fields or interactions, can be distinguished in experiments. [less ▲]

Detailed reference viewed: 163 (22 UL)
Full Text
Peer Reviewed
See detailEmission of entangled Kramers pairs from a helical mesoscopic capacitor
Dolcetto, Giacomo UL; Schmidt, Thomas UL

in Physical Review. B (2016), 94(7), 075444

The realization of single-electron sources in integer quantum Hall systems has paved the way for exploring electronic quantum optics experiments in solid-state devices. In this work, we characterize a ... [more ▼]

The realization of single-electron sources in integer quantum Hall systems has paved the way for exploring electronic quantum optics experiments in solid-state devices. In this work, we characterize a single Kramers pair emitter realized by a driven antidot embedded in a two-dimensional topological insulator, where spin-momentum locked edge states can be exploited for generating entanglement. Contrary to previous proposals, the antidot is coupled to both edges of a quantum spin Hall bar, thus enabling this mesoscopic capacitor to emit an entangled two-electron state. We study the concurrence $C$ of the emitted state and the efficiency $F$ of its emission as a function of the different spin-preserving and spin-flipping tunnel couplings of the antidot with the edges. We show that the efficiency remains very high ($Fgeq 50) even for maximally entangled states ($C=1$). We also discuss how the entanglement can be probed by means of noise measurements in a simple two-terminal setup. [less ▲]

Detailed reference viewed: 150 (8 UL)
Full Text
Peer Reviewed
See detailEffect of Dzyaloshinski-Moriya interaction on elastic small-angle neutron scattering
Michels, Andreas UL; Mettus, Denis UL; Honecker, Dirk et al

in Physical Review. B (2016), 94

Detailed reference viewed: 151 (12 UL)
Full Text
Peer Reviewed
See detailTransport through a quantum spin Hall antidot as a spectroscopic probe of spin textures
Rod, Alexia UL; Dolcetto, Giacomo UL; Rachel, Stephan et al

in Physical Review. B (2016), 94

We investigate electron transport through an antidot embedded in a narrow strip of two-dimensional topological insulator. We focus on the most generic and experimentally relevant case with broken axial ... [more ▼]

We investigate electron transport through an antidot embedded in a narrow strip of two-dimensional topological insulator. We focus on the most generic and experimentally relevant case with broken axial spin symmetry. Spin-non-conservation allows additional scattering processes which change the transport properties profoundly. We start from an analytical model for noninteracting transport, which we also compare with a numerical tight-binding simulation. We then extend this model by including Coulomb repulsion on the antidot, and we study the transport in the Coulomb-blockade limit. We investigate sequential tunneling and cotunneling regimes, and we find that the current-voltage characteristic allows a spectroscopic measurement of the edge-state spin textures. [less ▲]

Detailed reference viewed: 176 (11 UL)
Full Text
Peer Reviewed
See detailModeling charge relaxation in graphene quantum dots induced by electron-phonon interaction
Reichardt, Sven UL; Stampfer, Christoph

in Physical Review. B (2016), 93(24), 245423

Detailed reference viewed: 147 (7 UL)
Full Text
Peer Reviewed
See detailSpin-thermoelectric transport induced by interactions and spin-flip processes in two dimensional topological insulators
Ronetti; Vannucci, Luca; Dolcetto, Giacomo UL et al

in Physical Review. B (2016), 93(16), 165414

Detailed reference viewed: 103 (9 UL)
Full Text
Peer Reviewed
See detailDensity-functional theory with screened van der Waals interactions applied to atomic and molecular adsorbates on close-packed and non-close-packed surfaces
Ruiz, Victor G.; Liu, Wei; Tkatchenko, Alexandre UL

in Physical Review. B (2016), 93(3),

Modeling the adsorption of atoms and molecules on surfaces requires efficient electronic-structure methods that are able to capture both covalent and noncovalent interactions in a reliable manner. In ... [more ▼]

Modeling the adsorption of atoms and molecules on surfaces requires efficient electronic-structure methods that are able to capture both covalent and noncovalent interactions in a reliable manner. In order to tackle this problem, we have developed a method within density-functional theory (DFT) to model screened van der Waals interactions (vdW) for atoms and molecules on surfaces (the so-called DFT+vdW(surf) method). The relatively high accuracy of the DFT+vdW(surf) method in the calculation of both adsorption distances and energies, as well as the high degree of its reliability across a wide range of adsorbates, indicates the importance of the collective electronic effects within the extended substrate for the calculation of the vdW energy tail. We examine in detail the theoretical background of the method and assess its performance for adsorption phenomena including the physisorption of Xe on selected close-packed transition metal surfaces and 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on Au(111). We also address the performance of DFT+vdW(surf) in the case of non-close-packed surfaces by studying the adsorption of Xe on Cu(110) and the interfaces formed by the adsorption of a PTCDA monolayer on the Ag(111), Ag(100), and Ag(110) surfaces. We conclude by discussing outstanding challenges in the modeling of vdW interactions for studying atomic and molecular adsorbates on inorganic substrates. [less ▲]

Detailed reference viewed: 210 (2 UL)
Full Text
Peer Reviewed
See detailRaman spectroscopy of rare-earth orthoferrites RFeO3 (R=La, Sm, Eu, Gd Tb, Dy)
Weber, Mads Christof; Guennou, Mael UL; Zhao, Hong Jian et al

in Physical Review. B (2016), 94(21),

We report a Raman scattering study of six rare-earth orthoferrites La, Sm, Eu, Gd, Tb, Dy. The use of extensive polarized Raman scattering of SmFeO3 and first-principles calculations enable the assignment ... [more ▼]

We report a Raman scattering study of six rare-earth orthoferrites La, Sm, Eu, Gd, Tb, Dy. The use of extensive polarized Raman scattering of SmFeO3 and first-principles calculations enable the assignment of the observed phonon modes to vibrational symmetries and atomic displacements. The assignment of the spectra and their comparison throughout the whole series allow correlating the phonon modes with the orthorhombic structural distortions of RFeO3 perovskites. In particular the positions of two specific A(g) modes scale linearly with the two FeO6 octahedra tilt angles, allowing the distortion to be tracked throughout the series. At variance with literature, we find that the two octahedra tilt angles scale differently with the vibration frequencies of their respective A(g) modes. This behavior, as well as the general relations between the tilt angles, the frequencies of the associated modes, and the ionic radii are rationalized in a simple Landau model. The reported Raman spectra and associated phonon-mode assignment provide reference data for structural investigations of the whole series of orthoferrites. [less ▲]

Detailed reference viewed: 115 (3 UL)
Full Text
Peer Reviewed
See detailMultiple strain-induced phase transitions in LaNiO3 thin films
Weber, M. C.; Guennou, Mael UL; Dix, N. et al

in Physical Review. B (2016), 94(1),

Strain effects on epitaxial thin films of LaNiO3 grown on different single crystalline substrates are studied by Raman scattering and first-principles simulation. New Raman modes, not present in bulk or ... [more ▼]

Strain effects on epitaxial thin films of LaNiO3 grown on different single crystalline substrates are studied by Raman scattering and first-principles simulation. New Raman modes, not present in bulk or fully relaxed films, appear under both compressive and tensile strains indicating symmetry reductions. Interestingly, the Raman spectra and the underlying crystal symmetry for tensile and compressively strained films are different. Extensive mapping of LaNiO3 phase stability is addressed by simulations, showing that a variety of crystalline phases are indeed stabilized under strain. The calculated Raman frequencies reproduce the principal features of the experimental spectra, supporting the validity of the multiple strain-driven structural transitions predicted by the simulations. [less ▲]

Detailed reference viewed: 54 (1 UL)
Full Text
Peer Reviewed
See detailNon local quantum state engineering with the Cooper pair splitter beyond the Coulomb blockade regime
Amitai, Ehud; Tiwari, Rakesh; Walter, Stefan et al

in Physical Review. B (2015), 93

A Cooper pair splitter consists of two quantum dots side-coupled to a conventional superconductor. Usually, the quantum dots are assumed to have a large charging energy compared to the superconducting gap ... [more ▼]

A Cooper pair splitter consists of two quantum dots side-coupled to a conventional superconductor. Usually, the quantum dots are assumed to have a large charging energy compared to the superconducting gap, in order to suppress processes other than the coherent splitting of Cooper pairs. In this work, in contrast, we investigate the limit in which the charging energy is smaller than the superconducting gap. This allows us, in particular, to study the effect of a Zeeman field comparable to the charging energy. We find analytically that in this parameter regime the superconductor mediates an inter-dot tunneling term with a spin symmetry determined by the Zeeman field. Together with electrostatically tunable quantum dots, we show that this makes it possible to engineer a spin triplet state shared between the quantum dots. Compared to previous works, we thus extend the capabilities of the Cooper pair splitter to create entangled non local electron pairs. [less ▲]

Detailed reference viewed: 124 (3 UL)
Full Text
Peer Reviewed
See detailTime-resolved pure spin fractionalization and spin-charge separation in helical Luttinger liquid based devices
Calzona, Alessio; Carrega, Matteo; Dolcetto, Giacomo UL et al

in Physical Review. B (2015)

Detailed reference viewed: 133 (23 UL)
Full Text
Peer Reviewed
See detailSpin texture of generic helical edge states
Rod, Alexia UL; Schmidt, Thomas UL; Rachel, Stephan

in Physical Review. B (2015), 91

We study the spin texture of a generic helical liquid, the edge modes of a two-dimensional topological insulator with broken axial spin symmetry. By considering honeycomb and square-lattice realizations ... [more ▼]

We study the spin texture of a generic helical liquid, the edge modes of a two-dimensional topological insulator with broken axial spin symmetry. By considering honeycomb and square-lattice realizations of topological insulators, we show that in all cases the generic behavior of a momentum-dependent rotation of the spin quantization axis is realized. Here we establish this mechanism also for disk geometries with continuous rotational symmetry. Finally, we demonstrate that the rotation of spin-quantization axis remains intact for arbitrary geometries, i.e., in the absence of any continuous symmetry. We also calculate the dependence of this rotation on the model and material parameters. Finally, we propose a spectroscopy measurement which should directly reveal the rotation of the spin-quantization axis of the helical edge states. [less ▲]

Detailed reference viewed: 175 (24 UL)
Full Text
Peer Reviewed
See detailTunneling between helical Majorana modes and helical Luttinger liquids
Chao, Sung-Po; Schmidt, Thomas UL; Chung, Chung-Hou

in Physical Review. B (2015), 91

We propose and study the charge transport through single and double quantum point contacts setup between helical Majorana modes and an interacting helical Luttinger liquid. We show that the differential ... [more ▼]

We propose and study the charge transport through single and double quantum point contacts setup between helical Majorana modes and an interacting helical Luttinger liquid. We show that the differential conductance decreases for stronger repulsive interactions and that the point contacts become insulating above a critical interaction strength. For a single-point contact, the differential conductance as a function of bias voltage shows a series of peaks due to Andreev reflection of electrons in the Majorana modes. In the case of two point contacts, interference phenomena make the structure of the individual resonance peaks less universal and show modulations with different separation distance between the contacts. For small separation distance, the overall features remain similar to the case of a single-point contact. [less ▲]

Detailed reference viewed: 127 (2 UL)
Full Text
Peer Reviewed
See detailNon-Abelian parafermions in time-reversal invariant interacting helical systems
Orth, Christoph P.; Tiwari, Rakesh P.; Meng, Tobias et al

in Physical Review. B (2015), 91

The interplay between bulk spin-orbit coupling and electron-electron interactions produces umklapp scattering in the helical edge states of a two-dimensional topological insulator. If the chemical ... [more ▼]

The interplay between bulk spin-orbit coupling and electron-electron interactions produces umklapp scattering in the helical edge states of a two-dimensional topological insulator. If the chemical potential is at the Dirac point, umklapp scattering can open a gap in the edge state spectrum even if the system is time-reversal invariant. We determine the zero-energy bound states at the interfaces between a section of a helical liquid which is gapped out by the superconducting proximity effect and a section gapped out by umklapp scattering. We show that these interfaces pin charges which are multiples of $e/2$, giving rise to a Josephson current with $8\pi$ periodicity. Moreover, the bound states, which are protected by time-reversal symmetry, are fourfold degenerate and can be described as $Z_4$ parafermions. We determine their braiding statistics and show how braiding can be implemented in topological insulator systems. [less ▲]

Detailed reference viewed: 141 (7 UL)
Full Text
Peer Reviewed
See detailEfficiency fluctuations in quantum thermoelectric devices
Esposito, Massimiliano UL; Ochoa, M. A.; Galperin, M.

in Physical Review. B (2015), 91(11),

We present a method, based on characterizing efficiency fluctuations, to assess the performance of nanoscale thermoelectric junctions. This method accounts for effects typically arising in small junctions ... [more ▼]

We present a method, based on characterizing efficiency fluctuations, to assess the performance of nanoscale thermoelectric junctions. This method accounts for effects typically arising in small junctions, namely, stochasticity in the junction's performance, quantum effects, and nonequilibrium features preventing a linear response analysis. It is based on a nonequilibrium Green's function (NEGF) approach, which we use to derive the full counting statistics (FCS) for heat and work, and which in turn allows us to calculate the statistical properties of efficiency fluctuations. We simulate the latter for a variety of simple models where our method is exact. By analyzing the discrepancies with the semiclassical prediction of a quantum master equation (QME) approach, we emphasize the quantum nature of efficiency fluctuations for realistic junction parameters. We finally propose an approximate Gaussian method to express efficiency fluctuations in terms of nonequilibrium currents and noises which are experimentally measurable in molecular junctions. [less ▲]

Detailed reference viewed: 192 (10 UL)
Full Text
Peer Reviewed
See detailJosephson effect in normal and ferromagnetic topological-insulator junctions: Planar, step, and edge geometries
Nussbaum, Jennifer; Schmidt, Thomas UL; Bruder, Christoph et al

in Physical Review. B (2014), 90

We investigate Josephson junctions on the surface of a three-dimensional topological insulator in planar, step, and edge geometries. The elliptical nature of the Dirac cone representing the side surface ... [more ▼]

We investigate Josephson junctions on the surface of a three-dimensional topological insulator in planar, step, and edge geometries. The elliptical nature of the Dirac cone representing the side surface states of the topological insulator results in a scaling factor in the Josephson current in a step junction as compared to the planar junction. In edge junctions, the contribution of the Andreev bound states to the Josephson current vanishes due to spin-momentum locking of the surface states. Furthermore, we consider a junction with a ferromagnetic insulator between the superconducting regions. In these ferromagnetic junctions, we find an anomalous finite Josephson current at zero phase difference if the magnetization is pointing along the junction (and perpendicular to the Josephson current). An out-of-plane magnetization with respect to the central region of the junction opens up an exchange gap and leads to a nonmonotonic behavior of the critical Josephson current for sufficiently large magnetization as the chemical potential increases. [less ▲]

Detailed reference viewed: 140 (2 UL)
Full Text
Peer Reviewed
See detailElectron transport in multiterminal networks of Majorana bound states
Weithofer, Luzie; Recher, Patrik; Schmidt, Thomas UL

in Physical Review. B (2014), 90

We investigate electron transport through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics. In particular, we apply our general results to T-shaped ... [more ▼]

We investigate electron transport through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics. In particular, we apply our general results to T-shaped junctions of two Majorana nanowires. When the wires are in the topologically nontrivial regime, three MBS are localized near the outer ends of the wires, while one MBS is localized near the crossing point, and when the lengths of the wires are finite adjacent MBS can overlap. We propose a combination of current and cross-correlation measurements to reveal the predicted coupling of four Majoranas in a topological T junction. Interestingly, we show that the elementary transport processes at the central lead are different compared to the outer leads, giving rise to characteristic nonlocal signatures in electronic transport. We find quantitative agreement between our analytical model and numerical simulations of a tight-binding model. Using the numerical simulations, we discuss the effect of weak disorder on the current and the cross-correlation functions. [less ▲]

Detailed reference viewed: 132 (3 UL)
Full Text
Peer Reviewed
See detailStructure factor of interacting one-dimensional helical systems
Gangadharaiah, Suhas; Schmidt, Thomas UL; Loss, Daniel

in Physical Review. B (2014), 89

We calculate the dynamical structure factor $S(q,\omega)$ of a weakly interacting helical edge state in the presence of a magnetic field $B$. The latter opens a gap of width $2B$ in the single-particle ... [more ▼]

We calculate the dynamical structure factor $S(q,\omega)$ of a weakly interacting helical edge state in the presence of a magnetic field $B$. The latter opens a gap of width $2B$ in the single-particle spectrum, which becomes strongly nonlinear near the Dirac point. For chemical potentials $|\mu|>B$, the system then behaves as a nonlinear helical Luttinger liquid, and a mobile-impurity analysis reveals power-law singularities in $S(q,\omega)$ which depend on the interaction strength as well as on the spin texture of the edge states. For $|\mu|<B$, the low-energy excitations are gapped, and we determine $S(q,\omega)$ by using an analogy to exciton physics. [less ▲]

Detailed reference viewed: 97 (4 UL)
Full Text
Peer Reviewed
See detailPrediction of giant elastocaloric strength and stress-mediated electrocaloric effect in BaTiO3 single crystals
Liu, Yang; Wei, Jie; Janolin, Pierre-Eymeric et al

in Physical Review. B (2014), 90(10),

An applied stress field σ3 can reversibly change the temperature of an elastocaloric material under adiabatic conditions, and the temperature change Tσ3 is usually maximized near phase transitions.Using a ... [more ▼]

An applied stress field σ3 can reversibly change the temperature of an elastocaloric material under adiabatic conditions, and the temperature change Tσ3 is usually maximized near phase transitions.Using a thermodynamic approach, we demonstrate that an elastocaloric strength α = | Tσ3 |/|σ3| of 0.016 K/MPa can be achieved benefiting from the full first-order phase transition in BaTiO3 single crystals, which is comparable with typical elastocaloric materials reported in the literature. The elastocaloric temperature change is found to be giant (3.2 K) under a stress of 200 MPa with a temperature span of over 50 K, which can be significantly larger than its electrocaloric counterpart (∼1 K). Moreover, it is found that the elastocaloric strength can be remarkably enhanced (2.32 K/MPa) as long as the phase transition is triggered even by a modest stress near the sharp first-order phase transition, which is two orders of magnitude larger than those accomplished by full transition. Therefore, even a low stress (<30 MPa) can induce a modest elastocaloric effect (1.3 K) comparable with the electrocaloric counterpart, which is accompanied by a reduction of the working temperature span. In addition, it is found that the electrocaloric peak under tensile stresses moves towards higher temperatures with its magnitude slightly enhanced. Hopefully, our study will stimulate further investigations on elastocaloric and stress-mediated electrocaloric effects in ferroelectrics. [less ▲]

Detailed reference viewed: 94 (4 UL)
Full Text
Peer Reviewed
See detailFirst-principles study of PbTiO3 under uniaxial strains and stresses
Sharma, Henu; Kreisel, Jens UL; Ghosez, Philippe

in Physical Review. B (2014), 90(21),

The behavior of PbTiO3 under uniaxial strains and stresses is investigated from first-principles calculations within density functional theory. We show that irrespective of the uniaxial mechanical ... [more ▼]

The behavior of PbTiO3 under uniaxial strains and stresses is investigated from first-principles calculations within density functional theory. We show that irrespective of the uniaxial mechanical constraint applied, the system keeps a purely ferroelectric ground state, with the polarization aligned either along the constraint direction (FEz phase) or along one of the pseudocubic axes perpendicular to it (FEx phase). This contrasts with the cases of isotropic and biaxialmechanical constraints for which novel phases combining ferroelectric and antiferrodistortive motions have been previously reported. Under uniaxial strain, PbTiO3 switched from an FEx ground state under compressive strain to an FEz ground state under tensile strain beyond a critical strain ηc zz ≈ +1%. Under uniaxial stress, PbTiO3 exhibits either an FEx ground state under compression (σzz < 0) or an FEz ground state under tension (σzz > 0). Here, however, an abrupt jump of the structural parameters is also predicted under both compressive and tensile stresses at critical values σzz ≈ +2 and −8 GPa. This behavior appears to be similar to that predicted under negative isotropic pressure and might turn out to be practically useful for enhancing the piezoelectric response in nanodevices. [less ▲]

Detailed reference viewed: 104 (2 UL)