References of "Solar Energy Materials and Solar Cells"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRole of cation-mediated recombination in perovskite solar cells
Singh, Ajay UL; Kaiser, Waldemar; Gagliardi, Alessio

in Solar Energy Materials and Solar Cells (2021)

The origin of the hysteresis in the current–voltage (J–V) characteristics in perovskite solar cells (PSCs) is one of the most debated topics of recent years. Hysteretic effects are connected with the slow ... [more ▼]

The origin of the hysteresis in the current–voltage (J–V) characteristics in perovskite solar cells (PSCs) is one of the most debated topics of recent years. Hysteretic effects are connected with the slow redistribution of ionic defects during the voltage sweep. Existing literature focuses on the potential screening due to accumulated ions, solely, while neglecting the possibility of charge trapping and subsequent recombination via ions. We investigate the role of cation-mediated recombination of ions using time-dependent drift–diffusion simulations in MAPbI3 PSCs. Slow-moving cations are considered as traps for the electrons. Trapped electrons can subsequently recombine non-radiatively with holes. We analyze the role of the cation-mediated trapping and its parameters (capture coefficient, cation energy, ion mobility) as well as the scan rate on the device performance. For shallow cation energies, a decrease in open-circuit voltage and slight enhancement in hysteresis is observed. Deep cation energies lead to a substantial deterioration of device performance and large hysteresis enhancement. The presented study emphasizes the importance of considering the interaction of ions with charge carriers beyond the simple electrostatic models to improve our understanding of PSCs. [less ▲]

Detailed reference viewed: 57 (6 UL)
Full Text
Peer Reviewed
See detailNanometre-scale optical property fluctuations in Cu2ZnSnS4 revealed by low temperature cathodoluminescence
Mendis, B. G.; Taylor, A. A.; Guennou, Maël et al

in Solar Energy Materials and Solar Cells (2018), 174

Detailed reference viewed: 186 (7 UL)
Full Text
Peer Reviewed
See detailOn the origin of band-tails in kesterite
Rey, Germain UL; Larramona, G.; Bourdais, S. et al

in Solar Energy Materials and Solar Cells (2017)

Detailed reference viewed: 158 (2 UL)
Full Text
Peer Reviewed
See detailNanometre-scale optical property fluctuations in Cu2ZnSnS4 revealed by low temperature cathodoluminescence
Mendis, B. G.; Taylor, A. A.; Guennou, Mael et al

in Solar Energy Materials and Solar Cells (2017), 174

Detailed reference viewed: 142 (3 UL)
Full Text
Peer Reviewed
See detailImproved environmental stability of highly conductive nominally undoped ZnO layers suitable for n-type windows in thin film solar cells
Hala, Matej UL; Kato, H.; Algasinger, M. et al

in Solar Energy Materials and Solar Cells (2017), 161

Detailed reference viewed: 343 (14 UL)
Full Text
Peer Reviewed
See detailSecondary phase formation during monoclinic Cu2SnS3 growth for solar cell application
De Wild, Jessica UL; Robert, Erika UL; El Adib, Brahime et al

in Solar Energy Materials and Solar Cells (2016)

Detailed reference viewed: 218 (9 UL)
Full Text
Peer Reviewed
See detailOrdering kesterite improves solar cells:A low temperature post-deposition annealing study
Rey, Germain UL; Weiss, Thomas UL; Sendler, Jan UL et al

in Solar Energy Materials and Solar Cells (2016), 151

Detailed reference viewed: 267 (18 UL)
Full Text
Peer Reviewed
See detailOptical methodology for process monitoring of chalcopyrite photovoltaic technologies: Application to low cost Cu(In,Ga)(S,Se)2 electrodeposition based processes
Oliva, Florian; Kretzschmar, Steffen; Colombara, Diego UL et al

in Solar Energy Materials and Solar Cells (2016)

Non-destructive characterization of both single layers and completed devices are important issues for the development of efficient and low cost Cu(In,Ga)(S,Se)2 (CIGS) modules at high yields. This implies ... [more ▼]

Non-destructive characterization of both single layers and completed devices are important issues for the development of efficient and low cost Cu(In,Ga)(S,Se)2 (CIGS) modules at high yields. This implies for the need of methodologies suitable for the assessment of optical, electrical, and physico-chemical parameters that are relevant for the final device efficiency and that can be used for quality control and process monitoring at different process steps. In these applications, detection of in-homogeneities in the different layers from large area modules is especially relevant, being the presence of these inhomogeneities responsible for the existing gap between the efficiencies achieved in these technologies at cell and module levels. In this context, this work reviews the different optical methodologies that have been developed in the framework of the SCALENANO European project for the advanced assessment of the different layers in high efficiency electrodeposited – based CIGS devices. This has includes different strategies as those based on Raman scattering, Photoluminescence/Electroluminescence (PL/EL) based techniques and new photoelectrochemical based tools and firstly Raman spectroscopy is very sensitive to both composition and crystal quality parameters that are determining for device efficiency. Use of resonant Raman excitation strategies allows achieving a high sensitivity of the Raman spectra to the analysed features in the different regions of the device. This involves selection of the suitable excitation wavelength (in the broad spectral region from UV to IR) for the resonant Raman excitation of the required layer in the device. The strong increase in the intensity of the Raman peaks related to the use of resonant excitation conditions allows also decreasing the measuring time to times compatible with the implementation of these techniques at online process monitoring level. Analysed parameters include the electrical conductivity of the Al-doped ZnO window layer, the thickness of the CdS buffer layer and the chemical composition (S/(S+Se) relative content) and presence of relevant secondary phases as Cu-poor ordered vacancy compounds in the surface region of the absorbers. In addition PL/EL imaging are powerful techniques that provide direct access to the optoelectronic properties of the materials and devices. Whereas EL is performed using complete devices by injecting current in analogy to the operation of a light emitting diode, PL allows the characterization of bare absorber materials without the need for any functional or contacting layers. Moreover, semiconductor photo-electrochemistry (PEC) is a versatile technique that enables many opto-electronic properties of semiconductors to be determined. Essentially, a semiconductor on a conducting substrate placed in a solution containing redox species forms a Schottky barrier junction. The formation of such a diode enables basic semiconductor properties to be measured such as doping type, doping density, band gap and the flat band position versus the vacuum energy scale. In all these cases, quality control indicators suitable for the advanced assessment of these processes have been identified and validated for the electrodeposition-based processes developed at Nexcis Company. [less ▲]

Detailed reference viewed: 215 (14 UL)
Full Text
Peer Reviewed
See detailWhat is the band gap of kesterite?
Siebentritt, Susanne UL; Rey, Germain UL; Finger, Ashley UL et al

in Solar Energy Materials and Solar Cells (2015)

Detailed reference viewed: 268 (8 UL)
Full Text
Peer Reviewed
See detailQuantification of surface ZnSe in Cu2ZnSnSe4-based solar cells by analysis of the spectral response
Colombara, Diego UL; Robert, Erika UL; Crossay, Alexandre UL et al

in Solar Energy Materials and Solar Cells (2014), 123

Absorber layers consisting of Cu2ZnSnSe4 (CZTSe) and surface ZnSe in variable ratios were prepared by selenization of electroplated Cu/Sn/Zn precursors and completed into full devices with up to 5.6 ... [more ▼]

Absorber layers consisting of Cu2ZnSnSe4 (CZTSe) and surface ZnSe in variable ratios were prepared by selenization of electroplated Cu/Sn/Zn precursors and completed into full devices with up to 5.6 % power conversion efficiency. The loss of short circuit current density for samples with increasing ZnSe content is consistent with an overall reduction of spectral response, pointing to a ZnSe current blocking behavior. A feature in the spectral response centered around 3 eV was identified and attributed to light absorption by ZnSe. A model is proposed to account for additional collection of the carriers generated underneath ZnSe capable of diffusing across to the space charge region. The model satisfactorily reproduces the shape of the spectral response and the estimated ZnSe surface coverage is in good qualitative agreement with analysis of the Raman spectral mapping. The model emphasizes the importance of the ZnSe morphology on the spectral response, and its consequences on the solar cell device performance. [less ▲]

Detailed reference viewed: 529 (12 UL)
Full Text
Peer Reviewed
See detailComposition dependent characterization of copper indium diselenide thin film solar cells synthesized from electrodeposited binary selenide precursor stacks
Fischer, Johannes; Larsen, Jes K. UL; Guillot, Jerôme et al

in Solar Energy Materials and Solar Cells (2014), 126

Detailed reference viewed: 200 (9 UL)
Full Text
Peer Reviewed
See detailWhy do we make Cu(In,Ga)Se2 solar cells non-stoichiometric?
Siebentritt, Susanne UL; Gütay, Levent UL; Regesch, David UL et al

in Solar Energy Materials and Solar Cells (2013)

Detailed reference viewed: 230 (5 UL)
Full Text
Peer Reviewed
See detailWhat limits the efficiency of chalcopyrite solar cells?
Siebentritt, Susanne UL

in Solar Energy Materials and Solar Cells (2011), 95

Detailed reference viewed: 258 (14 UL)
Full Text
Peer Reviewed
See detailNanoscale investigations of the electronic surface properties of Cu(In,Ga)Se$_2$ thin films by scanning tunneling spectroscopy
Mönig, H.; Caballero, R.; Kaufmann, C. A. et al

in Solar Energy Materials and Solar Cells (2011), 95

In this work we investigate the electronic surface properties of polycrystalline Cu(In,Ga)Se$_2$ thin films by locally resolved scanning tunneling spectroscopy (STS). From current imaging tunneling ... [more ▼]

In this work we investigate the electronic surface properties of polycrystalline Cu(In,Ga)Se$_2$ thin films by locally resolved scanning tunneling spectroscopy (STS). From current imaging tunneling spectroscopy (CITS) maps of an area of we observe distinct granular inhomogeneities, where current-voltage ($I(U)$) spectra differ from grain to grain and vary between metallic and semiconducting characteristics. Due to the high density of defect states at the Cu(In,Ga)Se$_2$ surface, the metallic $I(U)$ characteristics is not surprising. In the case of the semiconducting $I(U)$ characteristics, we suggest a preferential oxidation of particular grains, which passivates defect levels at the surface. This is supported by the presence of gallium and indium oxides detected by global X-ray photoelectron spectroscopy. Furthermore, we recorded $I(U)$ spectra from different grains under supra band gap laser illumination, which always show semiconducting characteristics. This behavior can be explained by a saturated occupation of defect states by photoexcited charge carriers. By evaluating differential conductance $(dI/dU)$ spectra under illumination from various grains, we estimate the average surface band gap to and compare the valence band onset with results from macroscopic ultraviolet photoelectron spectroscopy. The high lateral resolution of our CITS data allows also to study electronic properties at grain boundaries, which are discussed with regard to a recent STS study on a non-oxidized sample. [less ▲]

Detailed reference viewed: 110 (4 UL)