References of "Russian Journal of Genetics"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPurine regulon of gamma-proteobacteria: a detailed description
Ravcheev, Dmitry UL; Gelfand, M.S.; Mironov, A.A. et al

in Russian Journal of Genetics (2002), 38(9), 1015-1025

The structure of the purine regulon was studied by a comparative genomic approach in seven genomes of gamma-proteobacteria: Escherichia coli, Salmonella typhimurium, Yersinia pestis, Haemophilus ... [more ▼]

The structure of the purine regulon was studied by a comparative genomic approach in seven genomes of gamma-proteobacteria: Escherichia coli, Salmonella typhimurium, Yersinia pestis, Haemophilus influenzae, Pasteurella multocida, Actinobacillus actinomycetemcomitans, and Vibrio cholerae. The palindromic binding site of the purine repressor (consensus ACGCAAACGTTTGCGT) is fairly well conserved upstream genes encoding enzymes that participate in the synthesis of inosine monophosphate from phosphoribozylpyrophosphate and in transfer of one-carbon units, and also upstream of some transport protein genes. These genes may be regarded as the main part of the purine regulon. In terms of physiology, the regulation of the purC and gcvTHP/folD genes seems to be especially important, because the PurR site was found upstream nonorthologous but functionally replaceable genes. However, the PurR site is poorly conserved upstream orthologs of some genes belonging to the E. coli purine regulon, such as genes involved in general nitrogen metabolism, biosynthesis of pyrimidines, and synthesis of AMP and GMP from IMP, and also upstream of the purine repressor gene. It is predicted that purine regulons of the examined bacteria include the following genes: upp participating in synthesis of pyrimidines; uraA encoding an uracil transporter gene; serA involved in serine biosynthesis; folD responsible for the conversion of N5,N10-methenyl tetrahydrofolate into N10-formyltetrahydrofolate; rpiA involved in ribose metabolism; and genes with an unknown function (yhhQ and ydiK). The PurR site was shown to have different structure in different genomes. Thus, the tendency for a decline of the conservatism of site positions 2 and 15 was observed in genomes of bacteria belonging to the Pasteurellaceae and Vibrionaceae groups. [less ▲]

Detailed reference viewed: 25 (0 UL)