References of "Progress in Neurobiology"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNew insights into the complex role of mitochondria in Parkinson's disease
Grünewald, Anne UL; Kumar, Kishore R; Sue, Carolyn M

in Progress in Neurobiology (2019), 177

New discoveries providing insights into mitochondrial bioenergetics, their dynamic interactions as well as their role in cellular homeostasis have dramatically advanced our understanding of the ... [more ▼]

New discoveries providing insights into mitochondrial bioenergetics, their dynamic interactions as well as their role in cellular homeostasis have dramatically advanced our understanding of the neurodegenerative process of Parkinson's disease (PD). Respiratory chain impairment is a key feature in sporadic PD patients and there is growing evidence that links proteins encoded by PD-associated genes to disturbances in mitochondrial function. Against the backdrop of latest advances in the development of PD treatments that target mitochondria, we aim to give an overview of the literature published in the last three decades on the significance of mitochondria in the pathogenesis of PD. We describe the contribution of mitochondrial genome alterations and PD-associated genes to mitochondrial maintenance. We highlight mitophagy as a key mechanism in neurodegeneration. Moreover, we focus on the reciprocal interaction between alpha-synuclein aggregation and mitochondrial dysfunction. We discuss a novel trafficking pathway involving mitochondrial-derived vesicles within the context of PD and provide a synopsis of the most recently emerging topics in PD research with respect to mitochondria. This includes the relationship between mitochondria and cell-mediated immunity, the ER-mitochondria axis, sirtuin-mediated mitochondrial stress response and the role of micro RNAs in the aetiology of PD. In addition, recent studies have challenged the neuro-centric view of PD pathology, moving microglia and astrocytes into the research spotlight. Greater insights into these mechanisms may hold the key for the development of novel targeted therapies, addressing the need for a disease-modifying treatment, which has remained elusive to date. [less ▲]

Detailed reference viewed: 205 (8 UL)
Full Text
Peer Reviewed
See detailTranscriptional and epigenetic mechanisms underlying astrocyte identity
Pavlou, Maria Angeliki UL; Grandbarbe, Luc UL; Buckley, Noel et al

in Progress in Neurobiology (2018)

Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their ... [more ▼]

Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their transition towards reactive astrocytes to their ability to undergo reprogramming, thereby revealing their potential to retain latent features of neural progenitor cells. We propose that the mechanisms underlying reactive astrogliosis or astrocyte reprogramming provide an opportunity for initiating neuronal regeneration, a process that is notably reduced in the mammalian nervous system throughout evolution. Conversely, this plasticity may also affect normal astrocytic functions resulting in pathologies ranging from neurodevelopmental disorders to neurodegenerative diseases and brain tumors. We postulate that epigenetic mechanisms linking extrinsic cues and intrinsic transcriptional programs are key factors to maintain astrocyte identity and function, and critically, to control the balance of regenerative and degenerative activity. Here, we will review the main evidences supporting this concept. We propose that unravelling the epigenetic and transcriptional mechanisms underlying the acquisition of astrocyte identity and plasticity, as well as understanding how these processes are modulated by the local microenvironment under specific threatening or pathological conditions, may pave the way to new therapeutic avenues for several neurological disorders including neurodegenerative diseases and brain tumors of astrocytic lineage. [less ▲]

Detailed reference viewed: 167 (11 UL)