![]() Bersweiler, Mathias ![]() ![]() in Nanotechnology (2020), 31(43), 435704 Magnetic nanoparticles offer a unique potential for various biomedical applications, but prior to commercial usage a standardized characterization of their structural and magnetic properties is required ... [more ▼] Magnetic nanoparticles offer a unique potential for various biomedical applications, but prior to commercial usage a standardized characterization of their structural and magnetic properties is required. For a thorough characterization, the combination of conventional magnetometry and advanced scattering techniques has shown great potential. In the present work, we characterize a powder sample of high-quality iron oxide nanoparticles that are surrounded with a homogeneous thick silica shell by DC magnetometry and magnetic small-angle neutron scattering (SANS). To retrieve the particle parameters such as their size distribution and saturation magnetization from the data, we apply standard model fits of individual data sets as well as global fits of multiple curves, including a combination of the magnetometry and SANS measurements. We show that by combining a standard least-squares fit with a subsequent Bayesian approach for the data refinement, the probability distributions of the model parameters and their cross correlations can be readily extracted, which enables a direct visual feedback regarding the quality of the fit. This prevents an overfitting of data in case of highly correlated parameters and renders the Bayesian method as an ideal component for a standardized data analysis of magnetic nanoparticle samples. [less ▲] Detailed reference viewed: 122 (8 UL)![]() Bender, Philipp Florian ![]() in Nanotechnology (2018), 29 Detailed reference viewed: 135 (4 UL)![]() ; ; et al in Nanotechnology (2017), 28 Detailed reference viewed: 100 (0 UL)![]() Sushko, Rymma ![]() ![]() ![]() in Nanotechnology (2014), 25(42), 425704 Elastomers filled with hard nanoparticles are of great technical importance for the rubber industry. In general, fillers improve mechanical properties of polymer materials, e.g. elastic moduli, tensile ... [more ▼] Elastomers filled with hard nanoparticles are of great technical importance for the rubber industry. In general, fillers improve mechanical properties of polymer materials, e.g. elastic moduli, tensile strength etc. The smaller the size of the particles the larger is the interface where interactions between polymer molecules and fillers can generate new properties. Using temperature-modulated differential scanning calorimetry and dynamic mechanical analysis, we investigated the properties of pure styrene-butadiene rubber (SBR) and SBR/alumina nanoparticles. Beside a reinforcement effect seen in the complex elastic moduli, small amounts of nanoparticles of about 2 wt% interestingly lead to an acceleration of the relaxation modes responsible for the thermal glass transition. This leads to a minimum in the glass transition temperature as a function of nanoparticle content in the vicinity of this critical concentration. The frequency dependent elastic moduli are used to discuss the possible reduction of the entanglement of rubber molecules as one cause for this unexpected behavior. [less ▲] Detailed reference viewed: 227 (48 UL)![]() ; Martin Lanzoni, Evandro ![]() in Nanotechnology (2014), 25(45), 455603 Partly released, relaxed and wrinkled InGaAs membranes are used as virtual substrates for overgrowth with InAs. Such samples exhibit different lattice parameters for the unreleased epitaxial parts, the ... [more ▼] Partly released, relaxed and wrinkled InGaAs membranes are used as virtual substrates for overgrowth with InAs. Such samples exhibit different lattice parameters for the unreleased epitaxial parts, the released flat, back-bond areas and the released wrinkled areas. A large InAs migration towards the released membrane is observed with a material accumulation on top of the freestanding wrinkles during overgrowth. A semi-quantitative analysis of the misfit strain shows that the material migrates to the areas of the sample with the lowest misfit strain, which we consider as the areas of the lowest chemical potential of the surface. Material migration is also observed for the edge-supported, freestanding InGaAs membranes found on these samples. Our results show that the released, wrinkled nanomembranes offer a growth template for InAs deposition that fundamentally changes the migration behavior of the deposited material on the growth surface. [less ▲] Detailed reference viewed: 56 (0 UL)![]() ; ; et al in Nanotechnology (2008), 19(27), 275708-5 We present acoustic charge transport in GaN nanowires (GaN NWs). The GaN NWs were grown by molecular beam epitaxy (MBE) on silicon(111) substrates. The nanowires were removed from the silicon substrate ... [more ▼] We present acoustic charge transport in GaN nanowires (GaN NWs). The GaN NWs were grown by molecular beam epitaxy (MBE) on silicon(111) substrates. The nanowires were removed from the silicon substrate, aligned using surface acoustic waves (SAWs) on the piezoelectric substrate LiNbO3 and finally contacted by electron beam lithography. Then, a SAW was used to create an acoustoelectric current in the GaN NWs which was detected as a function of radio-frequency (RF) wave frequency and its power. The presented method and our experimental findings open up a route towards new acoustic charge transport nanostructuredevices in a wide bandgap material such as GaN. [less ▲] Detailed reference viewed: 105 (0 UL) |
||