References of "Nano Energy"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe impact of Kelvin probe force microscopy operation modes and environment on grain boundary band bending in perovskite and Cu(In,Ga)Se2 solar cells
Martin Lanzoni, Evandro UL; Gallet, Thibaut UL; Spindler, Conrad UL et al

in Nano Energy (2021), 88

An in-depth understanding of the electronic properties of grain boundaries (GBs) in polycrystalline semiconductor absorbers is of high importance since their charge carrier recombination rates may be very ... [more ▼]

An in-depth understanding of the electronic properties of grain boundaries (GBs) in polycrystalline semiconductor absorbers is of high importance since their charge carrier recombination rates may be very high and hence limit the solar cell device performance. Kelvin Probe Force Microscopy (KPFM) is the method of choice to investigate GB band bending on the nanometer scale and thereby helps to develop passivation strategies. Here, it is shown that the workfunction, measured with amplitude modulation (AM)-KPFM, which is by far the most common KPFM measurement mode, is prone to exhibit measurement artifacts at grain boundaries on typical solar cell absorbers such as Cu(In,Ga)Se2 and CH3NH3PbI3. This is a direct consequence of a change in the cantilever–sample distance that varies on rough samples. Furthermore, we critically discuss the impact of different environments (air versus vacuum) and show that air exposure alters the GB and facet contrast, which leads to erroneous interpretations of the GB physics. Frequency modulation (FM)-KPFM measurements on non-air-exposed CIGSe and perovskite absorbers show that the amount of band bending measured at the GB is negligible and that the electronic landscape of the semiconductor surface is dominated by facet-related contrast due to the polycrystalline nature of the absorbers. [less ▲]

Detailed reference viewed: 166 (17 UL)
Full Text
Peer Reviewed
See detailOn the chemistry of grain boundaries in CuInS2 film
Schwarz, Torsten; Lomuscio, Alberto UL; Siebentritt, Susanne UL et al

in Nano Energy (2020), 76

Detailed reference viewed: 147 (2 UL)