References of "Engineering with Computers"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailInverse deformation analysis: an experimental and numerical assessment using the FEniCS Project
Mazier, Arnaud UL; Bilger, Alexandre; Forte, Antonio E. et al

in Engineering with Computers (2022)

In this paper, we develop a framework for solving inverse deformation problems using the FEniCS Project finite-element software. We validate our approach with experimental imaging data acquired from a ... [more ▼]

In this paper, we develop a framework for solving inverse deformation problems using the FEniCS Project finite-element software. We validate our approach with experimental imaging data acquired from a soft silicone beam under gravity. In contrast with inverse iterative algorithms that require multiple solutions of a standard elasticity problem, the proposed method can compute the undeformed configuration by solving only one modified elasticity problem. This modified problem has a complexity comparable to the standard one. The framework is implemented within an open-source pipeline enabling the direct and inverse deformation simulation directly from imaging data. We use the high-level unified form language (UFL) of the FEniCS Project to express the finite-element model in variational form and to automatically derive the consistent Jacobian. Consequently, the design of the pipeline is flexible: for example, it allows the modification of the constitutive models by changing a single line of code. We include a complete working example showing the inverse deformation of a beam deformed by gravity as supplementary material. [less ▲]

Detailed reference viewed: 226 (33 UL)
Full Text
Peer Reviewed
See detailA simulation-based design paradigm for complex cast components
Bordas, Stéphane UL; Conley, James. G.; Moran, Brian et al

in Engineering with Computers (2007), 23(1), 25-37

This paper describes and exercises a new design paradigm for cast components. The methodology integrates foundry process simulation, non-destructive evaluation (NDE), stress analysis and damage tolerance ... [more ▼]

This paper describes and exercises a new design paradigm for cast components. The methodology integrates foundry process simulation, non-destructive evaluation (NDE), stress analysis and damage tolerance simulations into the design process. Foundry process simulation is used to predict an array of porosity-related anomalies. The probability of detection of these anomalies is investigated with a radiographic inspection simulation tool (XRSIM). The likelihood that the predicted array of anomalies will lead to a failure is determined by a fatigue crack growth simulation based on the extended finite element method and therefore does not require meshing nor remeshing as the cracks grow. With this approach, the casting modeling provides initial anomaly information, the stress analysis provides a value for the critical size of an anomaly and the NDE assessment provides a detectability measure. The combination of these tools allows for accept/reject criteria to be determined at the early design stage and enables damage tolerant design philosophies. The methodology is applied to the design of a cast monolithic door used on the Boeing 757 aircraft. [less ▲]

Detailed reference viewed: 102 (0 UL)