References of "Biotechnology for Biofuels"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems.
Calusinska, Magdalena; Goux, Xavier; Fossepre, Marie et al

in Biotechnology for biofuels (2018), 11

Background: Anaerobic digestion (AD) is a microbe-driven process of biomass decomposition to CH4 and CO2. In addition to renewable and cost-effective energy production, AD has emerged in the European ... [more ▼]

Background: Anaerobic digestion (AD) is a microbe-driven process of biomass decomposition to CH4 and CO2. In addition to renewable and cost-effective energy production, AD has emerged in the European Union as an environmentally friendly model of bio-waste valorisation and nutrient recycling. Nevertheless, due to the high diversity of uncharacterised microbes, a typical AD microbiome is still considered as "dark matter". Results: Using the high-throughput sequencing of small rRNA gene, and a monthly monitoring of the physicochemical parameters for 20 different mesophilic full-scale bioreactors over 1 year, we generated a detailed view of AD microbial ecology towards a better understanding of factors that influence and shape these communities. By studying the broadly distributed OTUs present in over 80% of analysed samples, we identified putatively important core bacteria and archaea to the AD process that accounted for over 70% of the whole microbial community relative abundances. AD reactors localised at the wastewater treatment plants were shown to operate with distinct core microbiomes than the agricultural and bio-waste treating biogas units. We also showed that both the core microbiomes were composed of low (with average community abundance </= 1%) and highly abundant microbial populations; the vast majority of which remains yet uncharacterised, e.g. abundant candidate Cloacimonetes. Using non-metric multidimensional scaling, we observed microorganisms grouping into clusters that well reflected the origin of the samples, e.g. wastewater versus agricultural and bio-waste treating biogas units. The calculated diversity patterns differed markedly between the different community clusters, mainly due to the presence of highly diverse and dynamic transient species. Core microbial communities appeared relatively stable over the monitoring period. Conclusions: In this study, we characterised microbial communities in different AD systems that were monitored over a 1-year period. Evidences were shown to support the concept of a core community driving the AD process, whereas the vast majority of dominant microorganisms remain yet to be characterised. [less ▲]

Detailed reference viewed: 150 (3 UL)
Full Text
Peer Reviewed
See detailInsight into metabolic pathways of the potential biofuel producer, Paenibacillus polymyxa ICGEB2008
Adlakha, Nidhi; Pfau, Thomas UL; Ebenhöh, Oliver et al

in Biotechnology for Biofuels (2015), 8(159),

Background Paenibacillus polymyxa is a facultative anaerobe known for production of hydrolytic enzymes and various important biofuel molecules. Despite its wide industrial use and the availability of its ... [more ▼]

Background Paenibacillus polymyxa is a facultative anaerobe known for production of hydrolytic enzymes and various important biofuel molecules. Despite its wide industrial use and the availability of its genome sequence, very little is known about metabolic pathways operative in the Paenibacillus system. Here, we report metabolic insights of an insect gut symbiont, Paenibacillus polymyxa ICGEB2008, and reveal pathways playing an important role in the production of 2,3-butanediol and ethanol. Result We developed a metabolic network model of P. polymyxa ICGEB2008 with 133 metabolites and 158 reactions. Flux balance analysis was employed to investigate the importance of redox balance in ICGEB2008. This led to the detection of the Bifid shunt, a pathway previously not described in Paenibacillus, which can uncouple the production of ATP from the generation of reducing equivalents. Using a combined experimental and modeling approach, we further studied pathways involved in 2,3-butanediol and ethanol production and also demonstrated the production of hydrogen by the organism. We could further show that the nitrogen source is critical for metabolite production by Paenibacillus, and correctly quantify the influence on the by-product metabolite profile of ICGEB2008. Both simulations and experiments showed that metabolic flux is diverted from ethanol to acetate production when an oxidized nitrogen source is utilized. Conclusion We have created a predictive model of the central carbon metabolism of P. polymyxa ICGEB2008 and could show the presence of the Bifid shunt and explain its role in ICGEB2008. An in-depth study has been performed to understand the metabolic pathways involved in ethanol, 2,3-butanediol and hydrogen production, which can be utilized as a basis for further metabolic engineering efforts to improve the efficiency of biofuel production by this P. polymyxa strain. [less ▲]

Detailed reference viewed: 183 (11 UL)