References of "Applied Soft Computing"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA competitive Predator–Prey approach to enhance surveillance by UAV swarms
Stolfi, Daniel H.; Brust, Matthias R. UL; Danoy, Grégoire UL et al

in Applied Soft Computing (2021), 111

In this paper we present the competitive optimisation of a swarm of Unmanned Aerial Vehicles (UAV) protecting a restricted area from a number of intruders following a Predator–Prey approach. We propose a ... [more ▼]

In this paper we present the competitive optimisation of a swarm of Unmanned Aerial Vehicles (UAV) protecting a restricted area from a number of intruders following a Predator–Prey approach. We propose a Competitive Coevolutionary Genetic Algorithm (CompCGA) which optimises the parameters of the UAVs (i.e. predators) to maximise the detection of intruders, while the parameters of the intruders (i.e. preys) are optimised to maximise their intrusion success rate. Having chosen the CACOC (Chaotic Ant Colony Optimisation for Coverage) as the base mobility model for the UAVs, we propose an improved new version, where its behaviour is modified by identifying and optimising new parameters to improve the overall success rate when detecting intruders. Six case studies have been optimised using simulations by performing 30 independent runs (180 in total) of our CompCGA. Finally, we conducted a series of master tournaments (1,800,000 evaluations) using the best specimens obtained from each run and case study to test the robustness of our proposed approach against unexpected intruders. Our surveillance system improved the average percentage of intruders detected with respect to CACOC by a maximum of 126%. More than 90% of intruders were detected on average when using a swarm of 16 UAVs while CACOC’s detection rates are always under 80% in all cases. [less ▲]

Detailed reference viewed: 33 (2 UL)
Full Text
Peer Reviewed
See detailFinding a robust configuration for the AEDB information dissemination protocol for mobile ad hoc networks
Ruiz, Patricia; Dorronsoro, Bernabé UL; Talbi, El-Ghazali et al

in Applied Soft Computing (2015), 32

The Adaptive Enhanced Distance Based Broadcasting Protocol, AEDB hereinafter, is an advanced adaptive protocol for information dissemination in mobile ad hoc networks (MANETs). It is based on the Distance ... [more ▼]

The Adaptive Enhanced Distance Based Broadcasting Protocol, AEDB hereinafter, is an advanced adaptive protocol for information dissemination in mobile ad hoc networks (MANETs). It is based on the Distance Based broadcasting protocol, and it acts differently according to local information to minimize the energy and network use, while maximizing the coverage of the broadcasting process. As most of the existing communication protocols, AEDB relies on different thresholds for adapting its behavior to the environment. We propose in this work to look for configurations that induce a stable performance of the protocol in different networks by automatically fine tuning these thresholds thanks to the use of cooperative coevolutionary multi-objective evolutionary algorithms. Finding robust solutions for this problem is important because MANETs have a highly unpredictable and dynamic topology, features that have a strong influence on the performance of the protocol. Consequently, robust solutions that show a good performance under any circumstances are required. In this work, we define different fitness functions that measure robustness of solutions for better guiding the algorithm towards more robust solutions. They are: median, constrained, worst coverage, and worst hypervolume. Results show, that the two worst-case approaches perform better, not only in case of robustness but also in terms of accuracy of the reported AEDB configurations on a large set of networks. [less ▲]

Detailed reference viewed: 136 (1 UL)
Full Text
Peer Reviewed
See detailMulti-objective evolutionary algorithms for energy-aware scheduling on distributed computing systems
Guzek, Mateusz UL; Pecero, Johnatan UL; Dorronsoro, Bernabé UL et al

in Applied Soft Computing (2014), 24

The ongoing increase of energy consumption by IT infrastructures forces data center managers to find innovative ways to improve energy efficiency. The latter is also a focal point for different branches ... [more ▼]

The ongoing increase of energy consumption by IT infrastructures forces data center managers to find innovative ways to improve energy efficiency. The latter is also a focal point for different branches of computer science due to its financial, ecological, political, and technical consequences. One of the answers is given by scheduling combined with dynamic voltage scaling technique to optimize the energy consumption. The way of reasoning is based on the link between current semiconductor technologies and energy state management of processors, where sacrificing the performance can save energy. This paper is devoted to investigate and solve the multi-objective precedence constrained application scheduling problem on a distributed computing system, and it has two main aims: the creation of general algorithms to solve the problem and the examination of the problem by means of the thorough analysis of the results returned by the algorithms. The first aim was achieved in two steps: adaptation of state-of-the-art multi-objective evolutionary algorithms by designing new operators and their validation in terms of performance and energy. The second aim was accomplished by performing an extensive number of algorithms executions on a large and diverse benchmark and the further analysis of performance among the proposed algorithms. Finally, the study proves the validity of the proposed method, points out the best-compared multi-objective algorithm schema, and the most important factors for the algorithms performance. [less ▲]

Detailed reference viewed: 209 (15 UL)
Full Text
Peer Reviewed
See detailOptimising small-world properties in VANETs: Centralised and distributed overlay approaches
Schleich, Julien UL; Danoy, Grégoire UL; Dorronsoro, Bernabé UL et al

in Applied Soft Computing (2014), 21(0), 637646

Detailed reference viewed: 205 (12 UL)