References of "Zilian, Andreas 50003363"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModelling of Fluid-Structure Interaction – Effects of Added Mass, Damping and Stiffness
Zilian, Andreas UL

in Irschik, Hans; Belyaev, Alexander K. (Eds.) Dynamics of Mechanical Systems with Variable Mass (2014)

Fluid-flow around mechanical structures can sometimes lead to catastrophic failures. Improved modelling of fluid/structure interaction is required for safety and mechanical considerations. In this ... [more ▼]

Fluid-flow around mechanical structures can sometimes lead to catastrophic failures. Improved modelling of fluid/structure interaction is required for safety and mechanical considerations. In this contribution, concepts for modelling the interaction of structures and fluids are presented. Starting from excitation mechanisms and associated classifications, various model depth approaches are compared. Among them, the use of added coefficients for quasi-steady problems is discussed. On the basis of potential flow theory, different approaches for determining fluid-induced additional mass are established and illustrated using an analytical example. Given the limitations of simplifying the engineering models, the second part of the paper provides a brief overview on computational methods for fluid-structure interaction and presents a monolithic modelling approach using space-time finite elements for discretisation of both fluid and structure. Applications from aero- and hydro-elasticity show the applicability of computational methods for problems involving flow-induced added mass, damping, and stiffness. [less ▲]

Detailed reference viewed: 196 (17 UL)
Full Text
See detailMethodenentwicklung zur numerischen Strömungsanalyse von Freispiegelströmungen bei Schaufelwasserrädern
Schippke, Henning; Seidel, Christian; Dinkler, Dieter et al

Scientific Conference (2014, March)

Der Ausbau der Wasserkraft gewinnt im Kontext der Energiewende weltweit an Bedeutung. Neben der Turbinentechnologie erweisen sich Wasserräder im Hinblick auf ihre hohe ökologische Verträglichkeit und ihr ... [more ▼]

Der Ausbau der Wasserkraft gewinnt im Kontext der Energiewende weltweit an Bedeutung. Neben der Turbinentechnologie erweisen sich Wasserräder im Hinblick auf ihre hohe ökologische Verträglichkeit und ihr hohes ganzjähriges Arbeitsvermögen als besonders geeignet. Das sich drehende Wasserrad, umgeben von Wasser und Luft, stellt mechanisch ein gekoppeltes Drei- Feld-System bestehend aus einer Struktur und zwei Fluiden dar. Hinreichend genau ist es möglich, die Wasserradstruktur als Starrkörper zu beschreiben, während Luft und Wasser mit Hilfe der inkom- pressiblen Navier-Stokes Gleichungen gut modelliert werden können. Durch Anwendung der Raum-Zeit-Finite-Elemente-Methode zur Diskretisierung der inkompressiblen Navier-Stokes Gleichungen wird die Grenzfläche zwischen dem Starrkörper und den Fluiden explizit beschrieben und stets automatisch korrekt erfasst. Die Beschreibung der freien Wasseroberfläche als Grenzfläche zwischen den beiden Fluiden erfolgt implizit mit Hilfe der Level-Set Methode. Die Netzknoten der Fluid-Struktur-Grenzfläche verändern ihre Position infolge der Wasserraddrehung mit der Zeit, so dass ein Netzbewegungsalgorithmus notwendig ist. Die shear-slip mesh update method (SSMUM) ermöglicht als diskontinuierliches Netzbewegungsverfahren eine durchgehende Berechnung des Gesamtsystems, ohne dass das gesamte Gebiet neu vernetzt werden muss. Anhand verschiedener Testbeispiele wird die Güte der entwickelten numerischen Methode im Hinblick auf Ihre Erhaltungseigenschaften untersucht. Besonderes Augenmerk wird auf die Lösungsübertragung am shear-slip layer sowie auf die Abbildung der implizit beschriebenen freien Wasseroberfläche gelegt. [less ▲]

Detailed reference viewed: 127 (9 UL)
See detailA short course on The Extended Finite Element Method
Fries, Thomas-Peter; Zilian, Andreas UL

Book published by CES University of Luxembourg - 1 (2013)

Detailed reference viewed: 286 (21 UL)
Full Text
Peer Reviewed
See detailMethodenentwicklung zur numerischen Strömungsanalyse von Schaufelwasserrädern
Schippke, Henning; Zilian, Andreas UL; Seidel, Christian et al

in PAMM (2013)

Es wird ein Berechnungsmodell vorgestellt, mit dem eine numerischen Analyse der Strömungsvorgänge innerhalb von Schau- felwasserrädern möglich ist. Der Arbeitsschwerpunkt liegt dabei auf der ... [more ▼]

Es wird ein Berechnungsmodell vorgestellt, mit dem eine numerischen Analyse der Strömungsvorgänge innerhalb von Schau- felwasserrädern möglich ist. Der Arbeitsschwerpunkt liegt dabei auf der strömungsmechanischen Optimierung von Hochleis- tungswasserrädern der Weiterentwickelten Wasserradtechnologie. In dem Berechnungsmodell werden die inkompressiblen Navier-Stokes-Gleichungen in den unabhängigen Variablen Geschwindigkeiten und Druck mit Hilfe der zeit-diskontinuierlichen Raum-Zeit-Finite-Elemente-Methode diskretisiert und die auftretende Gebietsveränderung infolge der sich drehenden Struk- tur mit der Shear-Slip Mesh Update Methode als diskontinuierlichem Netzbewegungsverfahren erfasst. [less ▲]

Detailed reference viewed: 81 (4 UL)
Full Text
See detailNumerical Modelling of Piezoelectric Energy Harvesting Devices
Ravi, Srivathsan UL; Zilian, Andreas UL

Scientific Conference (2013)

This paper introduces a monolithic approach that provides simultaneous modeling and analysis of the coupled energy harvester, which involves surface-coupled fluid-structure interaction, volume-coupled ... [more ▼]

This paper introduces a monolithic approach that provides simultaneous modeling and analysis of the coupled energy harvester, which involves surface-coupled fluid-structure interaction, volume-coupled piezoelectric mechanics and a controlling energy harvesting circuit for applications in energy harvesting. The weak form of the governing equations is discretized by the space-time finite element method based on a mixed velocity-stress/rate form of the potential-dielectric displacement framework. The results will be compared to the simple cases with closed-form solution available from literature. [less ▲]

Detailed reference viewed: 123 (16 UL)
Full Text
See detailNumerical analysis of free-surface flow through rotating machines
Schippke, Henning; Zilian, Andreas UL

Presentation (2013)

In the context of the transformation process currently taking place in the energy production sector, energy gained from renewable power sources shall replace the present mixture, which mostly relies on ... [more ▼]

In the context of the transformation process currently taking place in the energy production sector, energy gained from renewable power sources shall replace the present mixture, which mostly relies on fossil burnings. Therefore, in the future most of the energy shall be gained by harvesting power from sun, wind or water, geothermal heat or biomass. In case of converting energy from wind into electrical power wind turbines are used in general, while hydropower turbines are the state-of-the-art machinery to derive energy from running water. In order to convert the potential energy from running water as well water wheels pose the method of choice. Turbines in air or water represent mechanically a two-field system, in which the structure of the turbine is surrounded by a streaming fluid. Due to the elasticity of the rotor blades the stresses of the fluid onto the structure deform the blades, which in return yield a time-dependent flow domain. Therefore turbines in a streaming fluid represent a typical example of fluid-structure interaction. Furthermore, in case of water wheels the surrounding air as third field and additional fluid phase comes into play introducing a free surface. In this contribution the governing equations of incompressible fluid flow are presented using primal variables and discretised via the space-time finite element method [3]. The discretised model equations of the fluid are stabilised using an SUPG/PSPG approach. Shape and test functions are continuous within the space-time slabs, while across the space- time slabs the shape and test functions are continuous only in space, but discontinuous in time yielding a time-discontinuous Galerkin approach. Due to the moving rotor blades a mesh moving technique needs to be incorporated into the computational set-up. Considering the occurring large but regular displacements of the flow boundary arising from the rotating rotor blades the shear-slip mesh update method (SSMUM) [1] as discontinuous mesh moving technique is applied. In case of water wheels the free surface is described implicitly via a Level-Set function [2] yielding a single fluid phase with almost discontinuous density and viscosity. The verification and validation of the developed numerical scheme is carried out with the help of computing classical benchmark problems as well as via a comparison to existing experimental data. [less ▲]

Detailed reference viewed: 83 (3 UL)
Full Text
Peer Reviewed
See detailExtended space-time finite elements for landslide dynamics
Pasenow, F.; Zilian, Andreas UL; Dinkler, D.

in International Journal for Numerical Methods in Engineering (2013), 93(3), 329-354

The paper introduces a methodology for numerical simulation of landslides experiencing considerable deformations and topological changes. Within an interface capturing approach, all interfaces are ... [more ▼]

The paper introduces a methodology for numerical simulation of landslides experiencing considerable deformations and topological changes. Within an interface capturing approach, all interfaces are implicitly described by specifically defined level-set functions allowing arbitrarily evolving complex topologies. The transient interface evolution is obtained by solving the level-set equation driven by the physical velocity field for all three level-set functions in a block Jacobi approach. The three boundary-coupled fluid-like continua involved are modeled as incompressible, governed by a generalized non-Newtonian material law taking into account capillary pressure at moving fluid-fluid interfaces. The weighted residual formulation of the level-set equations and the fluid equations is discretized with finite elements in space and time using velocity and pressure as unknown variables. Non-smooth solution characteristics are represented by enriched approximations to fluid velocity (weak discontinuity) and fluid pressure (strong discontinuity). Special attention is given to the construction of enriched approximations for elements containing evolving triple junctions. Numerical examples of three-fluid tank sloshing and air-water-liquefied soil landslides demonstrate the potential and applicability of the method in geotechnical investigations. © 2012 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 143 (2 UL)
Full Text
See detailSpace-Time Shear-Slip Mesh Update Method for Fluid-Structure Interaction Problems
Schippke, Henning; Zilian, Andreas UL

Presentation (2013)

Many practical problems in engineering consist of a structure surrounded by a fluid. These are all from the theoretical point of view fluid-structure interaction problems, in which the movement of the ... [more ▼]

Many practical problems in engineering consist of a structure surrounded by a fluid. These are all from the theoretical point of view fluid-structure interaction problems, in which the movement of the structure influences the flow field of the fluid and vice versa. In this contribution the structure is described in a total Lagrangian representation based on velocities and the 2nd Piola-Kirchhoff stress state as primal variables in a hybrid-mixed formulation, while the fluid is modelled via the incompressible Navier-Stokes equations with velocities and pressure as unknowns. The governing equations of fluid and structural dynamics are uniformly discretised using space-time finite elements [1]. The discretised model equations of the fluid are stabilised using a SUPG/PSPG approach. Shape and test functions are continuous within the space-time slabs, while across the space- time slabs the shape and test functions are continuous only in space, but discontinuous in time yielding a time-discontinuous Galerkin approach. The space-time discretisation of the coupled system with velocities and pressure as remaining unknowns lays the basis for a mathematically profound analysis due to its methodical uniformity. During the mesh generation of the fluid-structure problem a fitting mesh at the conjoint interface of fluid and structure is generated ensuring natively the geometric continuity. In the discretised flow domain, which model equations are formulated in the Eulerian framework, a mesh-moving scheme needs to be applied to avoid severe mesh distortions. In case of large but regular structural displacements a discontinuous mesh-moving scheme like the Shear-Slip Mesh Update Method (SSMUM) is applicable [2]. In order to increase robustness and conservation behaviour of the classical SSMUM a modification based on the space-time discretisation of the problem described above is investigated. In the Space- Time SSMUM (ST-SSMUM) the alteration of the spatial connectivity takes place continuously in the space-time domain. By avoiding sudden changes in the spatial connectivity between two adjacent space-time slabs any difficulty in evaluating the jump term is circumvented. The properties of the introduced ST-SSMUM is shown by a computation of the flow field of a rotating impeller, which can be interpreted as a simplified water turbine or blood pump. [less ▲]

Detailed reference viewed: 109 (2 UL)
Full Text
See detailNumerical Modelling of Piezoelectric Energy Harvesting Devices
Ravi, Srivathsan UL; Zilian, Andreas UL

in 2nd ECCOMAS Young Investigators Conference (YIC 2013) (2013)

This paper introduces a monolithic approach that provides simultaneous solution to the coupled system which involves volume-coupled piezoelectric mechanics and a controlling energy harvesting circuit for ... [more ▼]

This paper introduces a monolithic approach that provides simultaneous solution to the coupled system which involves volume-coupled piezoelectric mechanics and a controlling energy harvesting circuit for applications in energy harvesting. The weak form of the governing equations is discretized by space-time nite element method based on mixed velocity-stress/ rate of potential-dielectric displacement setting. The results will be compared to the simple cases with closed-form solution available from literature. [less ▲]

Detailed reference viewed: 102 (17 UL)
Full Text
Peer Reviewed
See detailSpace-time shear-slip mesh update method for fluid-structure interaction problems
Schippke, Henning; Zilian, Andreas UL

Scientific Conference (2012, September 14)

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties while being methodologically uniform and ... [more ▼]

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties while being methodologically uniform and flexible. Well-known phenomena which are ideally suited to be analysed by space-time methods, are fluid-structure interaction problems in general as well as fluid flows with subdomain phase boundaries or immersed moving objects. In this contribution a short overview of existing mesh- moving techniques is given within the framework of finite element discretisations of the incompressible Navier-Stokes equations in space and time. The investigation is based on a velocity-pressure formulation on the deforming space-time domain in combination with a GLS stabilisation of the balance of momentum as well as the conservation equation of mass. A modification of the shear-slip mesh update method in the framework of space-time finite element discretisation is presented leading to a continuous space-time mesh in the shear-slip layer. The modified mesh moving technique is applied to the classical flow situation of Poiseuille flow incorporating a rotating space-time fluid mesh. Its conservation properties and its quality regarding the approximated solution on moving and deforming meshes are investigated. [less ▲]

Detailed reference viewed: 70 (7 UL)
Full Text
Peer Reviewed
See detailDesign concept for point fitting of insulation glass units
Hechler, Oliver UL; Tibolt, Mike UL; Odenbreit, Christoph UL et al

in VI International Congress on Architectural Envelopes - Book (2012, June)

The façade significantly influences the energy efficiency of the building. However, in addition to high insulating properties, modern architecture demands a high transparency for natural illumination and ... [more ▼]

The façade significantly influences the energy efficiency of the building. However, in addition to high insulating properties, modern architecture demands a high transparency for natural illumination and the compliance with inner comfort criteria in the building. The increasing use of glass can be seen as the architectural intention to combine those well-being and energetic principles. The highest transparency can be achieved with point-fitted glass units. Though, insufficient knowledge is present to use point fittings for insulation glass units, which are required to comply with the demand for energy-efficiency. Therefore, research has been carried out to investigate in the load bearing mechanism of different point-fitted insulating glass units in order to find an innovative point fitting connection system for insulating glass units to the steel substructures. This paper presents results of this research campaign and provides information on how to design point-fitted insulating glass units. [less ▲]

Detailed reference viewed: 168 (18 UL)
Full Text
Peer Reviewed
See detailModification of the Shear-Slip Mesh Update Method with Respect to Space-Time Finite Element Discretisation of Fluid Flows
Schippke, Henning; Zilian, Andreas UL

Scientific Conference (2012, April 27)

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties while being methodologically uniform and ... [more ▼]

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties while being methodologically uniform and flexible. Well-known phenomena which are ideally suited to be analysed by space-time methods, are fluid-structure interaction problems in general as well as fluid flows with subdomain phase boundaries or immersed moving objects. In this contribution a short overview of existing mesh- moving techniques is given within the framework of finite element discretisations of the incompressible Navier-Stokes equations in space and time. The investigation is based on a SUPG/PSPG velocity-pressure formulation on the deforming space-time domain. A modification of the shear-slip mesh update method in the framework of space-time finite element discretisation is presented leading to a continuous space-time mesh in the shear-slip layer. The modified mesh moving technique is applied to engineering problems with rotating space-time fluid meshes. Its conservation properties and its quality regarding the approximated solutions on moving and deforming meshes are investigated. [less ▲]

Detailed reference viewed: 97 (1 UL)
Full Text
Peer Reviewed
See detailXFEM coupling of granular flows interacting with surrounding fluids
Pasenow, F.; Zilian, Andreas UL; Dinkler, D.

in ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers (2012)

In this paper, ideas for the simulation of sliding dry granular materials interacting with surrounding fluids are presented and first results are presented. The compressible granular material is modeled ... [more ▼]

In this paper, ideas for the simulation of sliding dry granular materials interacting with surrounding fluids are presented and first results are presented. The compressible granular material is modeled as a medium which can show solid-like and fluid-like characteristics. Therefore a weighted decomposition of stress tensors of a solid-like and a fluid-like phase is applied. The surrounding incompressible fluids are described with a Newtonian constitutive model. Interface dynamics are handled with the level-set method. The model equations are discretized with the space-time finite element method. Discontinuous solution characteristics across interfaces are captured numerically by the extended finite element method (XFEM). For all discontinuities the space of ansatz functions is enriched with Heaviside functions. [less ▲]

Detailed reference viewed: 89 (0 UL)
Full Text
Peer Reviewed
See detailA rheological interface model and its space-time finite element formulation for fluid-structure interaction
Legay, A.; Zilian, Andreas UL; Janssen, C.

in International Journal for Numerical Methods in Engineering (2011), 86(6), 667-687

This contribution discusses extended physical interface models for fluid-structure interaction problems and investigates their phenomenological effects on the behavior of coupled systems by numerical ... [more ▼]

This contribution discusses extended physical interface models for fluid-structure interaction problems and investigates their phenomenological effects on the behavior of coupled systems by numerical simulation. Besides the various types of friction at the fluid-structure interface the most interesting phenomena are related to effects due to additional interface stiffness and damping. The paper introduces extended models at the fluid-structure interface on the basis of rheological devices (Hooke, Newton, Kelvin, Maxwell, Zener). The interface is decomposed into a Lagrangian layer for the solid-like part and an Eulerian layer for the fluid-like part. The mechanical model for fluid-structure interaction is based on the equations of rigid body dynamics for the structural part and the incompressible Navier-Stokes equations for viscous flow. The resulting weighted residual form uses the interface velocity and interface tractions in both layers in addition to the field variables for fluid and structure. The weak formulation of the whole coupled system is discretized using space-time finite elements with a discontinuous Galerkin method for time-integration leading to a monolithic algebraic system. The deforming fluid domain is taken into account by deformable space-time finite elements and a pseudo-structure approach for mesh motion. The sensitivity of coupled systems to modification of the interface model and its parameters is investigated by numerical simulation of flow induced vibrations of a spring supported fluid-immersed cylinder. It is shown that the presented rheological interface model allows to influence flow-induced vibrations. © 2010 John Wiley & Sons, Ltd. [less ▲]

Detailed reference viewed: 89 (0 UL)
Full Text
Peer Reviewed
See detailExtended Finite Element Method
Fries, T.-P.; Zilian, Andreas UL; Moës, N.

in International Journal for Numerical Methods in Engineering (2011), 86(4-5), 403

[No abstract available]

Detailed reference viewed: 112 (3 UL)
Full Text
See detailModel order reduction of the aeroelastic response of a wind turbine rotor blade
Krukow, Ian; Zilian, Andreas UL; Dinkler, Dieter

Scientific Conference (2011)

The dynamic response of a wind turbine is mainly governed by the a􏰁ecting 􏰃ow forces of the wind. Concerning life expectancy, the vibration sensitivity of the rotor blades is of particular importance ... [more ▼]

The dynamic response of a wind turbine is mainly governed by the a􏰁ecting 􏰃ow forces of the wind. Concerning life expectancy, the vibration sensitivity of the rotor blades is of particular importance. In this contribution the dynamics of a rotating blade is described including the deformation-dependant aerodynamic forces [1]. Then, a reduced-order model for the coupled system of structure and 􏰃uid 􏰃ow is derived, which is more e􏰄cient concerning the calculation through the use of less degrees of freedom, but maintains the stability characteristics of the non-reduced-order model. A single rotor blade is described as a straight Bernoulli beam with a variable non-symmetric sectional pro􏰂le. The coordinate system refers to the current position of the blade. Besides the structural sti􏰁ness, mass inertia and aerodynamic loading according to potential 􏰃ow theory are included. The aerodynamic loading is linearised following the Scanlan model described in [2]. The linear equation of motion is formulated by means of the principle of virtual deformation assuming a constant rotational speed [3]. The quality of the model order reduction approach strongly depends on the chosen reduced basis. In this approach the basis is built by an appropriate selection of eigenmodes, which are dependent on the aerodynamic loading and parametrized on the rotational speed of the blade. The contribution discusses available methods [4] of creating reduced bases eligible to correctly represent the 􏰃utter characteristics in a spectrum of operating speeds. [less ▲]

Detailed reference viewed: 115 (0 UL)
Full Text
See detailDevelopments in Mesh-Moving and Mesh-Update Schemes for Space-Time Finite Element Dicretisations of Fluid Flows
Schippke, Henning; Zilian, Andreas UL

Scientific Conference (2011)

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties, while being methodologically uniform and ... [more ▼]

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties, while being methodologically uniform and flexible. Well-known phenomena, which are ideally suited to be analysed by space-time methods, are fluid-structure interaction problems in general as well as fluid flows with subdomain phase boundaries or immersed moving objects. In this contribution existing mesh-moving and mesh-update techniques are comparatively discussed within the framework of finite element discretisations of the Navier-Stokes equations in space and time. The investigation is based on a SUPG/PSPG velocity-pressure formulation on the deforming space-time do- main. Developments of mesh reconnection at fluid-solid interfaces due to mesh-moving/reconnecting proce- dures for space-time discretisations of fluid flows are presented. Furthermore mesh-update/reconnecting techniques are examined occurring in engineering problems involving sliding or rotating space-time fluid meshes. The presented techniques are accompanied by numerical examples of translational fluid flow as well as fluid flow with immersed rotating fluid bodies. The quality of the approximative solution on the moving and deforming mesh as well as its conservation properties are investigated. [less ▲]

Detailed reference viewed: 66 (2 UL)
Full Text
Peer Reviewed
See detailUntersuchung dünnwandiger Silostrukturen unter exzentrischer Entleerung
Reinstädler, Sven; Dinkler, Dieter; Zilian, Andreas UL

in Baustatik-Baupraxis 11 (2011)

Detailed reference viewed: 63 (2 UL)