![]() Salehian Ghamsari, Sona ![]() ![]() ![]() Scientific Conference (2023) In this study, we aim to shed light on the feasibility of assimilating synthetic aperture radar (SAR) data into a partial differential equation-based model of a poroelastic homogeneous aquifer with ... [more ▼] In this study, we aim to shed light on the feasibility of assimilating synthetic aperture radar (SAR) data into a partial differential equation-based model of a poroelastic homogeneous aquifer with anisotropic hydraulic conductivity (AHC). Although other authors [1] have considered the problem of assimilating SAR data into a poroelastic model that uses an inhomogeneous isotropic random field model for hydraulic conductivity, to the best of our knowledge, our study is the first to consider assimilating SAR data into a poroelastic model with AHC. Our study is inspired by the work of [2] where an aquifer test is performed on the Anderson Junction aquifer in southwestern Utah. Due to the inherent preferential direction of the fractured sandstone at the Anderson Junction site, the ratio of hydraulic conductivity along the principal axes can be on the order of 24 to 1. We build an anisotropically conductive poroelastic finite element model of the Anderson Junction site that can predict the coupled fluid flow and mechanical displacements. Our results show that the effective elastic response of the aquifer on the Earth’s surface has an anisotropic nature driven by the underlying anisotropy in the fluid problem, even when the elasticity problem is assumed to be isotropic. We interpret these results in the context of using SAR data to improve the characterization of aquifer systems, like the Anderson Junction site, with strongly anisotropic behavior. The Doctoral Training Unit Data-driven computational modelling and applications (DRIVEN) is funded by the Luxembourg National Research Fund under the PRIDE programme (PRIDE17/12252781). [1] Amal Alghamdi. Bayesian inverse problems for quasi-static poroelasticity with application to ground water aquifer characterization from geodetic data. PhD thesis, 2020. https://repositories.lib.utexas.edu/handle/2152/86231. [2] Victor M. Heilweil and Paul A. Hsieh. Determining Anisotropic Transmissivity Using a Simplified Papadopulos Method. Groundwater, 44(5):749–753, 2006. 10.1111/j.1745-6584.2006.00210.x [less ▲] Detailed reference viewed: 106 (23 UL)![]() Jamrozik, Michele Lynn ![]() ![]() ![]() in Proceedings of the 73rd International Astronautical Congress (2022) Detailed reference viewed: 53 (21 UL)![]() Thoemel, Jan ![]() ![]() ![]() in Proceedings of the 12th European CubeSatSymposium (2021, November 15) Detailed reference viewed: 114 (26 UL)![]() Querol, Jorge ![]() ![]() ![]() Poster (2021, April 19) The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are ... [more ▼] The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are concentrated and orbiting missions (single spacecraft or constellations) around the Earth, Moon or Mars will be particularly challenging. The standardization of the 5G Non-Terrestrial Networks (NTN) has already begun [1], and nothing prevents 5G from becoming a common communications standard supporting space resource missions [2]. The 5G Space Communications Lab (5G-SpaceLab) is an interdisciplinary experimental platform, funded by the Luxembourg Space Agency and is part of the Space Research Program of SnT. The lab allows users to design and emulate realistic space communications and control scenarios for the next-generation of space applications. The capabilities of the 5G-SpaceLab testbed combine the experience of different disciplines including space communications, space and satellite mission design, and space robotics. The most relevant include the demonstration of SDR 5G NTN terminals including NB-IoT, emulation of space communications channel scenarios (e.g. link budget, delay, Doppler…), small satellite platform and payload design and testing, satellite swarm flight formation, lunar rover and robotic arm control and AI-powered telerobotics. Earth-Moon communications is one of the scenarios demonstrated in the 5G-SpaceLab. Bidirectional communication for the teleoperation of lunar rovers for near real-time operations including data collection and sensors feedback will be tested. AI-based approaches for perception and control will be developed to overcome communication delays and to provide safer, trustworthy, and efficient remote control of the rovers. [1] 3GPP Release 17 Timeline. [Online]. Available: https://www.3gpp.org/release-17 [2] Nokia, Nokia selected by NASA to build first ever cellular network on the Moon. [Online]. Available: https://www.nokia.com/about-us/news/releases/2020/10/19/nokia-selected-by-nasa-to-build-first-ever-cellular-network-on-the-moon/ [less ▲] Detailed reference viewed: 460 (58 UL)![]() Thoemel, Jan ![]() ![]() in CEAS Space Journal (2020) Autonomous formation flight enables new satellite missions for novel applications. The cost and limits of propulsion systems can be overcome if environmental resources are being benefitted of. Currently ... [more ▼] Autonomous formation flight enables new satellite missions for novel applications. The cost and limits of propulsion systems can be overcome if environmental resources are being benefitted of. Currently, atmospheric drag is used in low Earth orbit to this end. Solar radiation pressure, which is of similar order of magnitude as aerodynamic ram pressure, is, however, always neglected. We introduce this force and show that it can be exploited. We demonstrate through simulations that a formation geometry is established quicker if the solar radiation pressure is modeled. [less ▲] Detailed reference viewed: 47 (0 UL)![]() Tabibi, Sajad ![]() ![]() in Remote Sensing of Environment (2020), 248 We retrieve sea levels in polar regions via GNSS reflectometry (GNSS-R), using signal-to-noise ratio (SNR) observations from eight POLENET GNSS stations. Although geodetic-quality antennas are designed to ... [more ▼] We retrieve sea levels in polar regions via GNSS reflectometry (GNSS-R), using signal-to-noise ratio (SNR) observations from eight POLENET GNSS stations. Although geodetic-quality antennas are designed to boost the direct reception from GNSS satellites and to suppress indirect reflections from natural surfaces, the latter can still be used to estimate the sea level in a stable terrestrial reference frame. Here, typical GNSS-R retrieval methodology is improved in two ways, 1) constraining phase-shifts to yield more precise reflector heights and 2) employing an extended dynamic filter to account for the second-order height rate of change (vertical acceleration). We validate retrievals over a 4-year period at Palmer Station (Antarctica), where there is a co-located tide gauge (TG). Because ice contaminates the long-period tidal constituents, we focus on the main tidal species (daily and subdaily), by employing a deseasonalization filter. The difference between sub-hourly GNSS-R retrievals of the ocean surface and TG records has a root-mean-square error (RMSE) of 15.4 cm and a correlation of 0.903, while the tidal prediction has a RMSE of 1.9 cm and a correlation of 0.998. There is excellent millimetric agreement between the two sensors for most eight major tidal constituents, with the exception of luni-solar diurnal (K1), principal solar (S2), and luni-solar semidiurnal (K2) components, which are biased in GNSS-R due to the leakage of the GPS orbital period. We also compare the GNSS-R tidal constituents from seven additional POLENET sites, without co-located TG, to global and local ocean tide models. We find that the root-sum-square-error (RSSE) of eight major constituents varies between 26.0 cm and 56.9 cm for different models. Given that the agreement in tidal constituents between the TG and GNSS-R was better at Palmer Station, we conclude that assimilating the GNSS-R retrievals into tidal models would improve their accuracy in Antarctica and Greenland, provided that care is exercised to avoid the orbital period overtones and also sea ice. [less ▲] Detailed reference viewed: 220 (29 UL)![]() van Dam, Tonie ![]() ![]() Scientific Conference (2019, December 10) GPS time-series of uplift show that points in and around the caldera have gone through cycles of uplift, followed by subsidence since observations began about three decades ago. A dramatic increase in the ... [more ▼] GPS time-series of uplift show that points in and around the caldera have gone through cycles of uplift, followed by subsidence since observations began about three decades ago. A dramatic increase in the uplift rate started in 2004 at the GPS station LKWY near Yellowstone Lake and Old Faithful, OFWY. Since 2010, the sites have subsided, began uplifting again in 2014 coincidentally after a M 4.8 earthquake near the Norris Geyser Basin, and then started subsiding again in 2016. The cause of the episodic uplift and subsidence and the spatial pattern of the surface displacement are not yet well understood. The 2003-2009 episode of rapid uplift is believed to result from deep source magma intrusion simultaneous with depressurization of the hydrothermal systems beneath the Norris Geyser Basin. But whether it is caused by the intrusion of magma from a distant reservoir, or by the expulsion and localized trapping of pressurized water and gas from rock that is already in-place, is not known. We have taken observations of absolute gravity at LKWY and OFWY almost annually since 2009. In this presentation, we compare gravity and uplift and provide some insight into the mechanism driving the uplift/subsidence cycles. [less ▲] Detailed reference viewed: 129 (7 UL)![]() van Dam, Tonie ![]() ![]() Scientific Conference (2018, December) Global navigation satellite system multipath reflectometry (GNSS-MR) has been used to exploit signals of opportunity at L-band for ground-based sea and lake level studies at several locations in the last ... [more ▼] Global navigation satellite system multipath reflectometry (GNSS-MR) has been used to exploit signals of opportunity at L-band for ground-based sea and lake level studies at several locations in the last few years. Although geodetic-quality antennas are designed to boost the direct transmission from the satellite and to suppress indirect surface reflections, the delay of reflections with respect to the line-of-sight propagation can be used to estimate the water-surface level in a stable terrestrial reference frame. In this contribution, signal-to-noise ratio (SNR) observations from commercial off-the-shelf systems are used to retrieve water level at multiple constellations and modulations. We constrained phase-shifts so as yield more precise reflector heights and further corrected for the tropospheric propagation delays for greater accuracy. We assess GNSS-MR accuracy and precision in two cases. In the first one, using the inversion formal uncertainty and modulation-specific variance factors, reflector heights are combined and converted to water level at hourly epoch spacing and eight-hourly averaging window length. The RMSE between GNSS-MR and tide gauge (TG) records for a single station in the Great Lakes is 1.93 cm for a 12-year period. In the second case, we employ an extended dynamic model, taking tidal velocity and acceleration into account, which is applied for ten stations worldwide. Regression slope between GNSS-MR and TG exhibits a smaller deviation from the ideal 1:1 relationship, compared to the conventional dynamic model (with no acceleration). The RMSE between sub-hourly GNSS-MR and TG is 1.98 cm, with 0.998 correlation coefficient. Tidal constituents agree at the sub-mm level between GNSS-MR and TG. [less ▲] Detailed reference viewed: 230 (40 UL)![]() Tabibi, Sajad ![]() ![]() in IEEE Transactions on Geoscience and Remote Sensing (2017), (99), Global navigation satellite system (GNSS) multipath reflectometry (MR) has emerged as a new technique that uses signals of opportunity broadcast by GNSS satellites and tracked by ground-based receivers to ... [more ▼] Global navigation satellite system (GNSS) multipath reflectometry (MR) has emerged as a new technique that uses signals of opportunity broadcast by GNSS satellites and tracked by ground-based receivers to retrieve environmental variables such as snow depth. The technique is based on the simultaneous reception of direct or line-of-sight (LOS) transmissions and corresponding coherent surface reflections (non-LOS). Until recently, snow depth retrieval algorithms only used legacy and modernized GPS signals. Using multiple GNSS constellations for reflectometry would improve GNSS-MR applications by providing more observations from more satellites and independent signals (carrier frequencies and code modulations). We assess GPS and GLONASS for combined multi-GNSS-MR using simulations as well as field measurements. Synthetic observations for different signals indicated a lack of detectable interfrequency and intercode biases in GNSS-MR snow depth retrievals. Received signals from a GNSS station continuously operating in France for a two-winter period are used for experimental snow depth retrieval. We perform an internal validation of various GNSS signals against the proven GPS-L2-C signal, which was validated externally against in situ snow depth in previous studies. GLONASS observations required a more complex handling to account for topography because of its particular ground track repeatability. Signal intercomparison show an average correlation of 0.922 between different GPS snow depths and GPS-L2-CL, while GLONASS snow depth retrievals have an average correlation that exceeds 0.981. In terms of precision and accuracy, legacy GPS signals are worse, while GLONASS signals and modernized GPS signals are of comparable quality. Finally, we show how an optimal multi-GNSS combined daily snow depth time series can be formed employing variance factors with a ~59%-90% precision improvement compared to individual signal snow depth retrievals, resulting in snow depth retrieval with uncertainty of 1.3 cm. The developed combination strategy can also be applied for the European Galileo and the Chines BeiDou navigation systems. [less ▲] Detailed reference viewed: 364 (45 UL)![]() van Dam, Tonie ![]() ![]() in Earth and Planetary Science Letters (2017), 459 Measurements of vertical crustal uplift from bedrock sites around the edge of the Greenland ice sheet (GrIS) can be used to constrain present day mass loss. Interpreting any observed crustal displacement ... [more ▼] Measurements of vertical crustal uplift from bedrock sites around the edge of the Greenland ice sheet (GrIS) can be used to constrain present day mass loss. Interpreting any observed crustal displacement around the GrIS in terms of present day changes in ice is complicated, however, by the glacial isostatic adjustment (GIA) signal. With GPS observations alone, it is impossible to separate the uplift driven by present day mass changes from that due to ice mass changes in the past. Wahr et al. (1995) demonstrated that viscoelastic surface displacements were related to the viscoelastic gravity changes through a proportionality constant that is nearly independent of the choice of Earth viscosity or ice history model. Thus, by making measurements of both gravity and surface motion at a bedrock site, the viscoelastic effects could be removed from the observations and we would be able to constrain present day ice mass changes. Alternatively, we could use the same observations of surface displacements and gravity to determine the GIA signal. In this paper, we extend the theory of Wahr et al. (1995) by introducing a constant, Z, that represents the ratio between the elastic changes in gravity and elastic uplift at a particular site due to present day mass changes. Further, we combine 20 yrs of GPS observations of uplift with eight absolute gravity observations over the same period to determine the GIA signal near Kulusuk, a site on the southeastern side of the GrIS, to experimentally demonstrate the theory. We estimate that the GIA signal in the region is 4.49 ± 1.44 mm/yr and is inconsistent with most previously reported model predictions that demonstrate that the GIA signal here is negative. However, as there is very little in situ data to constrain the GIA rate in this part of Greenland, the Earth model or the ice history reconstructions could be inaccurate (Khan et al., 2016). Improving the estimate of GIA in this region of Greenland will allow us to better determine the present day changes in ice mass in the region, e.g. from GRACE. [less ▲] Detailed reference viewed: 368 (38 UL)![]() ; ; van Dam, Tonie ![]() in Journal of Geophysical Research: Solid Earth (2017) Detailed reference viewed: 345 (19 UL)![]() Meyrath, Thierry ![]() ![]() in Journal of Geodesy (2017), 91(11), 1329-1350 Large-scale mass redistribution in the terrestrial water storage (TWS) leads to changes in the low-degree spherical harmonic coefficients of the Earth's surface mass density field. Studying these low ... [more ▼] Large-scale mass redistribution in the terrestrial water storage (TWS) leads to changes in the low-degree spherical harmonic coefficients of the Earth's surface mass density field. Studying these low-degree fluctuations is an important task that contributes to our understanding of continental hydrology. In this study, we use global GNSS measurements of vertical and horizontal crustal displacements that we correct for atmospheric and oceanic effects, and use a set of modified basis functions similar to Clarke et al. (2007) to perform an inversion of the corrected measurements in order to recover changes in the coefficients of degree-0 (hydrological mass change), degree-1 (center of mass shift) and degree-2 (flattening of the Earth) caused by variations in the TWS over the period January 2003 - January 2015. We infer from the GNSS-derived degree-0 estimate an annual variation in total continental water mass with an amplitude of $(3.49 \pm 0.19) \times 10^{3}$ Gt and a phase of $70 \pm 3^{\circ}$ (implying a peak in early March), in excellent agreement with corresponding values derived from the Global Land Data Assimilation System (GLDAS) water storage model that amount to $(3.39 \pm 0.10) \times 10^{3}$ Gt and $71 \pm 2^{\circ}$, respectively. The degree-1 coefficients we recover from GNSS predict annual geocentre motion (i.e. the offset change between the center of common mass and the center of figure) caused by changes in TWS with amplitudes of $0.69 \pm 0.07$ mm for GX, $1.31 \pm 0.08$ mm for GY and $2.60 \pm 0.13$ mm for GZ. These values agree with GLDAS and estimates obtained from the combination of GRACE and the output of an ocean model using the approach of Swenson et al. (2008) at the level of about 0.5, 0.3 and 0.9 mm for GX, GY and GZ, respectively. Corresponding degree-1 coefficients from SLR, however, generally show higher variability and predict larger amplitudes for GX and GZ. The results we obtain for the degree-2 coefficients from GNSS are slightly mixed, and the level of agreement with the other sources heavily depends on the individual coefficient being investigated. The best agreement is observed for $T_{20}^C$ and $T_{22}^S$, which contain the most prominent annual signals among the degree-2 coefficients, with amplitudes amounting to $(5.47 \pm 0.44) \times 10^{-3}$ and $(4.52 \pm 0.31) \times 10^{-3}$ m of equivalent water height (EWH), respectively, as inferred from GNSS. Corresponding agreement with values from SLR and GRACE is at the level of or better than $0.4 \times 10^{-3}$ and $0.9 \times 10^{-3}$ m of EWH for $T_{20}^C$ and $T_{22}^S$, respectively, while for both coefficients, GLDAS predicts smaller amplitudes. Somewhat lower agreement is obtained for the order-1 coefficients, $T_{21}^C$ and $T_{21}^S$, while our GNSS inversion seems unable to reliably recover $T_{22}^C$. For all the coefficients we consider, the GNSS-derived estimates from the modified inversion approach are more consistent with the solutions from the other sources than corresponding estimates obtained from an unconstrained standard inversion. [less ▲] Detailed reference viewed: 250 (15 UL)![]() Meyrath, Thierry ![]() ![]() in Geophysical Journal International (2017), 208(2), 1126-1138 We study fluctuations in the degree-2 zonal spherical harmonic coefficient of the Earth's gravity potential, $C_{20}$, over the period 2003-2015. This coefficient is related to the Earth's oblateness and ... [more ▼] We study fluctuations in the degree-2 zonal spherical harmonic coefficient of the Earth's gravity potential, $C_{20}$, over the period 2003-2015. This coefficient is related to the Earth's oblateness and studying its temporal variations, $\Delta C_{20}$, can be used to monitor large-scale mass movements between high and low latitude regions. We examine $\Delta C_{20}$ inferred from six different sources, including satellite laser ranging (SLR), GRACE and global geophysical fluids models. We further include estimates that we derive from measured variations in the length-of-day (LOD), from the inversion of global crustal displacements as measured by GPS, as well as from the combination of GRACE and the output of an ocean model as described by \cite{sunetal2016}. We apply a sequence of trend- and seasonal moving average filters to the different time series in order to decompose them into an interannual, a seasonal and an intraseasonal component. We then perform a comparison analysis for each component, and we further estimate the noise level contained in the different series using an extended version of the three-cornered-hat method. For the seasonal component, we generally obtain a very good agreement between the different sources, and except for the LOD-derived series, we find that over 90\% of the variance in the seasonal components can be explained by the sum of an annual and semiannual oscillation of constant amplitudes and phases, indicating that the seasonal pattern is stable over the considered time period. High consistency between the different estimates is also observed for the intraseasonal component, except for the solution from GRACE, which is known to be affected by a strong tide-like alias with a period of about 161 days. Estimated interannual components from the different sources are generally in agreement with each other, although estimates from GRACE and LOD present some discrepancies. Slight deviations are further observed for the estimate from the geophysical models, likely to be related to the omission of polar ice and groundwater changes in the model combination we use. On the other hand, these processes do not seem to play an important role at seasonal and shorter time scales, as the sum of modelled atmospheric, oceanic and hydrological effects effectively explains the observed $C_{20}$ variations at those scales. We generally obtain very good results for the solution from SLR, and we confirm that this well-established technique accurately tracks changes in $C_{20}$. Good agreement is further observed for the estimate from the GPS inversion, showing that this indirect method is successful in capturing fluctuations in $C_{20}$ on scales ranging from intra- to interannual. Obtaining accurate estimates from LOD, however, remains a challenging task and more reliable models of atmospheric wind fields are needed in order to obtain high-quality $\Delta C_{20}$, in particular at the seasonal scale. The combination of GRACE data and the output of an ocean model appears to be a promising approach, particularly since corresponding $\Delta C_{20}$ is not affected by tide-like aliases, and generally gives better results than the solution from GRACE, which still seems to be of rather poor quality. [less ▲] Detailed reference viewed: 325 (23 UL)![]() ; ; et al in Science Advances (2016), 2(9), Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in ... [more ▼] Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year. [less ▲] Detailed reference viewed: 112 (1 UL)![]() ; ; et al Poster (2016, April 29) The impact of solar activity on the ionosphere at polar latitudes is not well known compare to low and mid-latitudes due to lack of experimental observations, especially over Antarctica. Consequently, one ... [more ▼] The impact of solar activity on the ionosphere at polar latitudes is not well known compare to low and mid-latitudes due to lack of experimental observations, especially over Antarctica. Consequently, one of the present challenges of the Space Weather community is to better characterize (1) the climatological behavior of the polar ionosphere in response to variations of the solar activity and (2) the different response of the ionosphere at high latitudes during extreme solar events and geomagnetic storms. For that, the combination of GNSS measurements (e.g. GPS, GLONASS and Galileo) on two separate frequencies allows determining the ionospheric delay between a ground receiver and a satellite. This delay is function of the integrated number of electrons encountered in the ionosphere along the signal ray path, called the Total Electron Content (TEC). It is thus possible to study the behavior of ionospheric TEC at different time and spatial scales from the observations of a network of permanent GNSS stations. In the frame of GIANT-LISSA and IceCon projects we installed since 2009 five GNSS stations around the Princess Elisabeth station. We used these stations additionally to other stations from the IGS global network to estimate the ionospheric TEC at different locations over Antarctica. This study presents this regional data set during different solar activity levels and discusses the different climatological behaviors identified in the ionosphere at these high latitudes. Finally, we will show few examples of typical TEC disturbances observed during extreme solar events. [less ▲] Detailed reference viewed: 568 (23 UL)![]() Meyrath, Thierry ![]() ![]() in Journal of Geodynamics (2016), 99 Continental hydrology has a large influence on the excitation of polar motion (PM). However, these effects are far from being completely understood. Current global water storage models differ ... [more ▼] Continental hydrology has a large influence on the excitation of polar motion (PM). However, these effects are far from being completely understood. Current global water storage models differ significantly from one another and are unable to completely represent the complex hydrological cycle, particularly at interannual scales. A promising alternative to study hydrological effects on PM is given by the GRACE satellite mission. In this study, we assess the ability of GRACE to investigate interannual hydrological PM excitations. For this purpose, we use the latest GRACE Release-05 data from three different processing centers (CSR, GFZ, JPL) that we convert into estimates of hydrological PM excitation, $\chi_1^H$ and $\chi_2^H$. In addition to these gravimetric excitations, we also consider geodetic hydrological excitations, which we calculate by removing modelled atmospheric and oceanic effects from precise observations of full PM excitations. We remove signals with frequencies $\geq 1$ cpy from the series and compare the resulting estimates of interannual hydrological excitations for the period 2004.5 - 2014.5. The comparison between geodetic and gravimetric excitations reveals some discrepancies for $\chi_1^H$, likely to be related to inadequately modelled atmospheric and oceanic effects. On the other hand, good agreement is observed for $\chi_2^H$. For both components, the best agreement between geodetic and gravimetric excitations is obtained for the estimate from CSR. Very good agreement is obtained between GRACE-derived excitations from different processing centers, in particular for CSR and JPL. Both the comparisons between geodetic and gravimetric, and the comparisons between the different gravimetric excitations give substantially better results for $\chi_2^H$ than for $\chi_1^H$, leading to the conclusion that geodetic and gravimetric $\chi_2^H$ can be more reliably determined than $\chi_1^H$. Although there are still some discrepancies between geodetic and gravimetric interannual hydrological excitations, we conclude that GRACE and potential follow-on missions are valuable tools to study the interannual effects of continental hydrology on the excitation of PM. [less ▲] Detailed reference viewed: 196 (13 UL)![]() Bourantas, Georgios ![]() ![]() E-print/Working paper (2016) In the present paper, we introduce the Finite Difference Method-Meshless Method (FDM-MM) in the context of geodynamical simulations. The proposed numerical scheme relies on the well-established FD method ... [more ▼] In the present paper, we introduce the Finite Difference Method-Meshless Method (FDM-MM) in the context of geodynamical simulations. The proposed numerical scheme relies on the well-established FD method along with the newly developed “meshless” method and, is considered as a hybrid Eulerian/Lagrangian scheme. Mass, momentum, and energy equations are solved using an FDM method, while material properties are distributed over a set of markers (particles), which represent the spatial domain, with the solution interpolated back to the Eulerian grid. The proposed scheme is capable of solving flow equations (Stokes flow) in uniform geometries with particles, “sprinkled” in the spatial domain and is used to solve convection- diffusion problems avoiding the oscillation produced in the Eulerian approach. The resulting algebraic linear systems were solved using direct solvers. Our hybrid approach can capture sharp variations of stresses and thermal gradients in problems with a strongly variable viscosity and thermal conductivity as demonstrated through various benchmarking test cases. The present hybrid approach allows for the accurate calculation of fine thermal structures, offering local type adaptivity through the flexibility of the particle method. [less ▲] Detailed reference viewed: 264 (17 UL)![]() Li, Zhao ![]() ![]() in International Association of Geodesy Symposia (2015) Detailed reference viewed: 259 (9 UL)![]() Bourantas, Georgios ![]() Scientific Conference (2015, April 12) Geodynamic modeling is an important branch of Earth Sciences. Direct observation of geodynamic processes is limited in both time and space, while on the other hand numerical methods are capable of ... [more ▼] Geodynamic modeling is an important branch of Earth Sciences. Direct observation of geodynamic processes is limited in both time and space, while on the other hand numerical methods are capable of simulating millions of years in a matter of days on a desktop computer. The model equations can be reduced to a set of Partial Differential Equations with possibly discontinuous coefficients, governing mass, momentum and heat transfer over the domain. Some of the major challenges associated with such simulations are (1) geological time scales, which require long (in physical time) simulations using small time steps; (2) the presence of localization zones over which large gradients are present and which are much smaller than the overall physical dimensions of the computational domain and require much more refined discretization than for the rest of the domain, much like in fracture or shear band mechanics. An added difficulty is that such structures in the solution may appear after long periods of stagnant behaviour; (3) the definition of boundary conditions, material parameters and that of a suitable computational domain in terms of size; (4) a posteriori error estimation, sensitivity analysis and discretization adaptivity for the resulting coupled problem, including error propagation between different unknown fields. Consequently, it is arguable that any suitable numerical methods aimed at the solution of such problems on a large scale must be able to (i) provide ease of discretization refinement, including possible partition of unity enrichment; (ii) offer a large stability domain, so that “large” time steps can be chosen; (iii) ease of parallelization and good scalability. Our approach is to rely on “meshless” methods based on a point collocation strategy for the discretization of the set of PDEs. The method is hybrid Eulerian/Lagrangian, which enables to switch easily between stagnant periods and periods of localization. Mass and momentum equations are solved using a meshless point collocation Eulerian method, while energy equation are solved using a set of particles, distributed over the spatial domain, with the solution interpolated back to the Eulerian grid at every time step. This hybrid approach allows for the accurate calculation of fine thermal structures, through the ease of adaptivity offered by the flexibility of the particle method. The approximation space is constructed using the Discretization Correction Particle Strength Exchange (DC PSE) method. The proposed scheme gives the capability of solving flow equations (Stokes flow) in fully irregular geometries while particles, “sprinkled” in the spatial domain, are used to solve convection-diffusion problems avoiding the oscillation produced in the Eulerian approach. The resulting algebraic linear systems were solved using direct solvers. Our hybrid approach can capture sharp variations of stresses and thermal gradients in problems with a strongly variable viscosity and thermal conductivity as demonstrated through various benchmarking test cases such as the development of Rayleigh-Taylor instabilities, viscous heating and flows with non-Newtonian rheology. [less ▲] Detailed reference viewed: 687 (30 UL)![]() van Dam, Tonie ![]() ![]() in Pan European Networks (2015), (14), 58-59 Detailed reference viewed: 285 (24 UL) |
||