References of "Samhi, Jordan 50035256"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTriggerZoo: A Dataset of Android Applications Automatically Infected with Logic Bombs
Samhi, Jordan UL; Bissyande, Tegawendé François D Assise UL; Klein, Jacques UL

in 19th International Conference on Mining Software Repositories, Data Showcase, (MSR 2022) (2022, May 23)

Many Android apps analyzers rely, among other techniques, on dynamic analysis to monitor their runtime behavior and detect potential security threats. However, malicious developers use subtle, though ... [more ▼]

Many Android apps analyzers rely, among other techniques, on dynamic analysis to monitor their runtime behavior and detect potential security threats. However, malicious developers use subtle, though efficient, techniques to bypass dynamic analyzers. Logic bombs are examples of popular techniques where the malicious code is triggered only under specific circumstances, challenging comprehensive dynamic analyses. The research community has proposed various approaches and tools to detect logic bombs. Unfortunately, rigorous assessment and fair comparison of state-of-the-art techniques are impossible due to the lack of ground truth. In this paper, we present TriggerZoo, a new dataset of 406 Android apps containing logic bombs and benign trigger-based behavior that we release only to the research community using authenticated API. These apps are real-world apps from Google Play that have been automatically infected by our tool AndroBomb. The injected pieces of code implementing the logic bombs cover a large pallet of realistic logic bomb types that we have manually characterized from a set of real logic bombs. Researchers can exploit this dataset as ground truth to assess their approaches and provide comparisons against other tools. [less ▲]

Detailed reference viewed: 84 (7 UL)
Full Text
Peer Reviewed
See detailJuCify: A Step Towards Android Code Unification for Enhanced Static Analysis
Samhi, Jordan UL; Gao, Jun UL; Daoudi, Nadia UL et al

in 44th International Conference on Software Engineering (ICSE 2022) (2022, May 21)

Native code is now commonplace within Android app packages where it co-exists and interacts with Dex bytecode through the Java Native Interface to deliver rich app functionalities. Yet, state-of-the-art ... [more ▼]

Native code is now commonplace within Android app packages where it co-exists and interacts with Dex bytecode through the Java Native Interface to deliver rich app functionalities. Yet, state-of-the-art static analysis approaches have mostly overlooked the presence of such native code, which, however, may implement some key sensitive, or even malicious, parts of the app behavior. This limitation of the state of the art is a severe threat to validity in a large range of static analyses that do not have a complete view of the executable code in apps. To address this issue, we propose a new advance in the ambitious research direction of building a unified model of all code in Android apps. The JuCify approach presented in this paper is a significant step towards such a model, where we extract and merge call graphs of native code and bytecode to make the final model readily-usable by a common Android analysis framework: in our implementation, JuCify builds on the Soot internal intermediate representation. We performed empirical investigations to highlight how, without the unified model, a significant amount of Java methods called from the native code are ``unreachable'' in apps' call-graphs, both in goodware and malware. Using JuCify, we were able to enable static analyzers to reveal cases where malware relied on native code to hide invocation of payment library code or of other sensitive code in the Android framework. Additionally, JuCify's model enables state-of-the-art tools to achieve better precision and recall in detecting data leaks through native code. Finally, we show that by using JuCify we can find sensitive data leaks that pass through native code. [less ▲]

Detailed reference viewed: 80 (13 UL)
Full Text
Peer Reviewed
See detailDifuzer: Uncovering Suspicious Hidden Sensitive Operations in Android Apps
Samhi, Jordan UL; Li, Li; Bissyande, Tegawendé François D Assise UL et al

in 44th International Conference on Software Engineering (ICSE 2022) (2022, May 21)

One prominent tactic used to keep malicious behavior from being detected during dynamic test campaigns is logic bombs, where malicious operations are triggered only when specific conditions are satisfied ... [more ▼]

One prominent tactic used to keep malicious behavior from being detected during dynamic test campaigns is logic bombs, where malicious operations are triggered only when specific conditions are satisfied. Defusing logic bombs remains an unsolved problem in the literature. In this work, we propose to investigate Suspicious Hidden Sensitive Operations (SHSOs) as a step towards triaging logic bombs. To that end, we develop a novel hybrid approach that combines static analysis and anomaly detection techniques to uncover SHSOs, which we predict as likely implementations of logic bombs. Concretely, Difuzer identifies SHSO entry-points using an instrumentation engine and an inter-procedural data-flow analysis. Then, it extracts trigger-specific features to characterize SHSOs and leverages One-Class SVM to implement an unsupervised learning model for detecting abnormal triggers. We evaluate our prototype and show that it yields a precision of 99.02% to detect SHSOs among which 29.7% are logic bombs. Difuzer outperforms the state-of-the-art in revealing more logic bombs while yielding less false positives in about one order of magnitude less time. All our artifacts are released to the community. [less ▲]

Detailed reference viewed: 58 (8 UL)
Full Text
Peer Reviewed
See detailOn The (In)Effectiveness of Static Logic Bomb Detector for Android Apps
Samhi, Jordan UL; Bartel, Alexandre UL

in IEEE Transactions on Dependable and Secure Computing (2021)

Android is present in more than 85% of mobile devices, making it a prime target for malware. Malicious code is becoming increasingly sophisticated and relies on logic bombs to hide itself from dynamic ... [more ▼]

Android is present in more than 85% of mobile devices, making it a prime target for malware. Malicious code is becoming increasingly sophisticated and relies on logic bombs to hide itself from dynamic analysis. In this paper, we perform a large scale study of TSO PEN, our open-source implementation of the state-of-the-art static logic bomb scanner T RIGGER S COPE, on more than 500k Android applications. Results indicate that the approach scales. Moreover, we investigate the discrepancies and show that the approach can reach a very low false-positive rate, 0.3%, but at a particular cost, e.g., removing 90% of sensitive methods. Therefore, it might not be realistic to rely on such an approach to automatically detect all logic bombs in large datasets. However, it could be used to speed up the location of malicious code, for instance, while reverse engineering applications. We also present T RIGDB a database of 68 Android applications containing trigger-based behavior as a ground-truth to the research community. [less ▲]

Detailed reference viewed: 38 (3 UL)
Peer Reviewed
See detailLes dangers de pastebin
Samhi, Jordan UL; Bissyande, Tegawendé François D Assise UL; Klein, Jacques UL

Article for general public (2021)

Detailed reference viewed: 83 (10 UL)
Full Text
Peer Reviewed
See detailRAICC: Revealing Atypical Inter-Component Communication in Android Apps
Samhi, Jordan UL; Bartel, Alexandre UL; Bissyande, Tegawendé François D Assise UL et al

in 43rd International Conference on Software Engineering (ICSE) (2021, May)

Inter-Component Communication (ICC) is a key mechanism in Android. It enables developers to compose rich functionalities and explore reuse within and across apps. Unfortunately, as reported by a large ... [more ▼]

Inter-Component Communication (ICC) is a key mechanism in Android. It enables developers to compose rich functionalities and explore reuse within and across apps. Unfortunately, as reported by a large body of literature, ICC is rather "complex and largely unconstrained", leaving room to a lack of precision in apps modeling. To address the challenge of tracking ICCs within apps, state of the art static approaches such as Epicc, IccTA and Amandroid have focused on the documented framework ICC methods (e.g., startActivity) to build their approaches. In this work we show that ICC models inferred in these state of the art tools may actually be incomplete: the framework provides other atypical ways of performing ICCs. To address this limitation in the state of the art, we propose RAICC a static approach for modeling new ICC links and thus boosting previous analysis tasks such as ICC vulnerability detection, privacy leaks detection, malware detection, etc. We have evaluated RAICC on 20 benchmark apps, demonstrating that it improves the precision and recall of uncovered leaks in state of the art tools. We have also performed a large empirical investigation showing that Atypical ICC methods are largely used in Android apps, although not necessarily for data transfer. We also show that RAICC increases the number of ICC links found by 61.6% on a dataset of real-world malicious apps, and that RAICC enables the detection of new ICC vulnerabilities. [less ▲]

Detailed reference viewed: 115 (29 UL)
Full Text
Peer Reviewed
See detailDexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode
Daoudi, Nadia UL; Samhi, Jordan UL; Kabore, Abdoul Kader UL et al

in Communications in Computer and Information Science (2021)

Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such ... [more ▼]

Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such as malware detection, where deep learning on images alleviates the need for comprehensively hand-crafted features generalising to different malware variants. We postulate that this research direction could become the next frontier in Android malware detection, and therefore requires a clear roadmap to ensure that new approaches indeed bring novel contributions. We contribute with a first building block by developing and assessing a baseline pipeline for image-based malware detection with straightforward steps. We propose DexRay, which converts the bytecode of the app DEX files into grey-scale “vector” images and feeds them to a 1-dimensional Convolutional Neural Network model. We view DexRay as foundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection. The performance of DexRay evaluated on over 158k apps demonstrates that, while simple, our approach is effective with a high detection rate(F1-score= 0.96). Finally, we investigate the impact of time decay and image-resizing on the performance of DexRay and assess its resilience to obfuscation. This work-in-progress paper contributes to the domain of Deep Learning based Malware detection by providing a sound, simple, yet effective approach (with available artefacts) that can be the basis to scope the many profound questions that will need to be investigated to fully develop this domain. [less ▲]

Detailed reference viewed: 115 (23 UL)
Full Text
Peer Reviewed
See detailA First Look at Android Applications in Google Play related to Covid-19
Samhi, Jordan UL; Allix, Kevin UL; Bissyande, Tegawendé François D Assise UL et al

in Empirical Software Engineering (2021)

Due to the convenience of access-on-demand to information and business solutions, mobile apps have become an important asset in the digital world. In the context of the Covid-19 pandemic, app developers ... [more ▼]

Due to the convenience of access-on-demand to information and business solutions, mobile apps have become an important asset in the digital world. In the context of the Covid-19 pandemic, app developers have joined the response effort in various ways by releasing apps that target different user bases (e.g., all citizens or journalists), offer different services (e.g., location tracking or diagnostic-aid), provide generic or specialized information, etc. While many apps have raised some concerns by spreading misinformation or even malware, the literature does not yet provide a clear landscape of the different apps that were developed. In this study, we focus on the Android ecosystem and investigate Covid-related Android apps. In a best-effort scenario, we attempt to systematically identify all relevant apps and study their characteristics with the objective to provide a First taxonomy of Covid related apps, broadening the relevance beyond the implementation of contact tracing. Overall, our study yields a number of empirical insights that contribute to enlarge the knowledge on Covid-related apps: (1) Developer communities contributed rapidly to the Covid-19, with dedicated apps released as early as January 2020; (2) Covid-related apps deliver digital tools to users (e.g., health diaries), serve to broadcast information to users (e.g., spread statistics), and collect data from users (e.g., for tracing); (3) Covid-related apps are less complex than standard apps; (4) they generally do not seem to leak sensitive data; (5) in the majority of cases, Covid-related apps are released by entities with past experience on the market, mostly official government entities or public health organizations. [less ▲]

Detailed reference viewed: 92 (31 UL)
Peer Reviewed
See detailDésamorcer des bombes logiques
Samhi, Jordan UL; Bartel, Alexandre UL

Article for general public (2020)

Detailed reference viewed: 66 (19 UL)