![]() Liao, Yu-Chung ![]() Doctoral thesis (2018) Flood is one of the most serious natural disasters that affect human beings, so how to effectively reduce flood damage to human beings is of vital im- portance. One of the keys to reducing flood damage is ... [more ▼] Flood is one of the most serious natural disasters that affect human beings, so how to effectively reduce flood damage to human beings is of vital im- portance. One of the keys to reducing flood damage is to design buildings effectively enough to withstand flooding and the impact of floating debris on the structures. Although, many studies exist to address the impact of floods on structures, the impact of floating debris on the buildings and structures, i.e. wall or bridge during flooding have not been fully addressed yet. Thus, the objec- tive of this dissertation is to predict the trajectory of floating debris of rivers during flooding and analyze its impact on the structures. For achieving this goal, a numerical tool based on the mesh-less method of Smoothed Particle Hydrodynamics (SPH), Discrete Element Method (DEM) and Finite Element Method (FEM) is proposed in this dissertation. Where SPH is employed to describe the fluid flow and DEM is employed to ob- tain the contact force between the floating debris and structures. And a coupling model of SPH and DEM is presented and implemented based on the OpenFPM, a scalable and open C++ framework for particles and mesh simulation in parallel. Buildings and structures are represented by Finite Element Method (FEM) mesh, for which impact with floating debris is de- termined. These contacts of floating debris cause forces at the positions of impact, e.g. mechanical load and are evaluated by using commercial Finite Element Analysis (FEA) software Abaqus. As a result, a numerical tool combing the SPH-DEM and FEA is presented in this dissertation It is worth to notice, that treating the inlet/outlet con- dition in SPH is a challenging issue due to its Lagrangian nature. A suitable boundary treatment for the inlet / outlet condition in SPH for river flooding problem in 3D is unavailable in literatures. Thus, this dissertation extended the open boundary treatment for SPH using semi-analytical conditions and Riemann solver in 2D (Ferrand et al., 2017) to 3D. Which in results, a new open boundary treatment that is suitable for describing the inlet/outlet condition of SPH in 3D is presented and applied to describe the inlet/outlet condition in this dissertation. The numerical tool is applied to study the scenario of floating trees, trans- porting in the Mosel river and hitting the flood control wall at Kesten town in the west Germany during flooding. As the result of simulation shows, the floating trees are driven by the river and heading to the downstream and eventually collide with the flood control wall. This impact causes the flood control wall crack from the position of impact. Which means that the flood control wall is not capable of standing the impact of floating trees that transported in the river. [less ▲] Detailed reference viewed: 184 (11 UL)![]() Rousset, Alban ![]() ![]() ![]() in AIP Conference Proceedings of 15th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM) (2018, July 10) Collision detection is an ongoing source of research and optimization in many fields including video-games and numerical simulations [6, 7, 8]. The goal of collision detection is to report a geometric ... [more ▼] Collision detection is an ongoing source of research and optimization in many fields including video-games and numerical simulations [6, 7, 8]. The goal of collision detection is to report a geometric contact when it is about to occur or has actually occurred. Unfortunately, detailed and exact collision detection for large amounts of objects represent an immense amount of computations, naively n 2 operation with n being the number of objects [9]. To avoid and reduce these expensive computations, the collision detection is decomposed in two phases as it shown on Figure 1: the Broad-Phase and the Narrow-Phase. In this paper, we focus on Broad-Phase algorithm in a large dynamic three-dimensional environment. We studied two kinds of Broad-Phase algorithms: spatial partitioning and spatial sorting. Spatial partitioning techniques operate by dividing space into a number of regions that can be quickly tested against each object. Two types of spatial partitioning will be considered: grids and trees. The grid-based algorithms consist of a spatial partitioning processing by dividing space into regions and testing if objects overlap the same region of space. And this reduces the number of pairwise to test. The tree-based algorithms use a tree structure where each node spans a particular space area. This reduces the pairwise checking cost because only tree leaves are checked. The spatial sorting based algorithm consists of a sorted spatial ordering of objects. Axis-Aligned Bounding Boxes (AABBs) are projected onto x, y and z axes and put into sorted lists. By sorting projection onto axes, two objects collide if and only if they collide on the three axes. This axis sorting reduces the number of pairwise to tested by reducing the number of tests to perform to only pairs which collide on at least one axis. For this study, ten different Broad-Phase collision detection algorithms or framework have been considered. The Bullet [6], CGAL [10, 11] frameworks have been used. Concerning the implemented algorithms most of them come from papers or given implementation. [less ▲] Detailed reference viewed: 356 (63 UL)![]() Peters, Bernhard ![]() ![]() ![]() in 39. DRESDNER WASSERBAUKOLLOQUIUM (2016) Hochwasser hervorgerufen durch natürliche Ursachen wie Schneeschmelze oder durch bauliche Maßnahmen wie Flussbegradigung verursacht häufig eine Flutkatastrophe mit verheerenden Überschwemmungen. Zu den ... [more ▼] Hochwasser hervorgerufen durch natürliche Ursachen wie Schneeschmelze oder durch bauliche Maßnahmen wie Flussbegradigung verursacht häufig eine Flutkatastrophe mit verheerenden Überschwemmungen. Zu den schon katastrophalen Folgen von Hochwasser addieren sich häufig noch die Schäden von gefährliche Treibgut, das mit den Fluten mitgerissen wird und unter Umständen über weite Strecken transportiert wird. Mitgerissenes Treibgut kann zur Verklausung von Brücken führen oder auch Bauwerke zerstören. Um die Folgen eines Hochwassers einschließlich Transport von Treibgut abschätzen zu können, sind numerische Werkzeuge eine adäquate Ergänzung zu experimentellen Methoden, die oft mit einem sehr hohen Aufwand verbunden sind. Deshalb wird im vorliegenden Beitrag eine neue und innovative numerischer Ansatz vorgestellt, der den Transport von Treibgut bei Hochwasser aber auch bei Normalwasser beschreibt. Dazu werden die beiden numerischen Methoden beruhend auf einem diskreten und kontinuierlichem Ansatz gekoppelt. Letzterer beinhaltet die Euler Methoden, mit denen die Strömung des Wassers im Rahmen von bewährten Rechenmethoden der Computational Fluid Dynamik (CFD) bestimmt wird. Treibgut wird diskret betrachtet, in dem es mit der Diskreten Element Methode (DEM) beschreiben wird. Damit kann sowohl jedes einzelne Element des Treibgutes berücksichtigt werden als auch seine Eigenschaften wie Größe, Form und Gewicht. Innerhalb dieses Ansatzes können die Kontaktkräfte zwischen den einzelnen Elementen des Treibgutes berechnet werden, mit denen sich Geschwindigkeit, Position und Orientierung des Treibgutes bestimmen lassen. Zusätzlich wird über eine Kopplung zur fluiden Phase der Einfluss sowohl der Wassergeschwindigkeit als des Auftriebs mit berücksichtigt. [less ▲] Detailed reference viewed: 194 (21 UL) |
||