References of "Lagunas, Eva 50002156"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFeasible Point Pursuit and Successive Convex Approximation for Transmit Power Minimization in SWIPT-Multigroup Multicasting Systems
Gautam, Sumit UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Green Communications and Networking (2021)

We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures ... [more ▼]

We consider three wireless multi-group (MG) multicasting (MC) systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures, energy harvesting (EH) only users with non-linear EH module, and users with joint ID and EH capabilities having separate units for the two operations, respectively. Each user is categorized under unique group(s), which can be of MC type specifically meant for ID users, and/or an energy group consisting of EH explicit users. The joint ID and EH users are a part of both EH group and single MC group. We formulate an optimization problem to minimize the total transmit power with optimal precoder designs for the three aforementioned scenarios, under certain quality-of-service constraints. The problem may be adapted to the well-known semidefinite program and solved via relaxation of rank-1 constraint. However, this process leads to performance degradation in some cases, which increases with the rank of solution obtained from the relaxed problem. Hence, we develop a novel technique motivated by the feasible-point pursuit successive convex approximation method in order to address the rank-related issue. The benefits of proposed method are illustrated under various operating conditions and parameter values, with comparison between the three above-mentioned scenarios. [less ▲]

Detailed reference viewed: 22 (0 UL)
Full Text
Peer Reviewed
See detailNOMA-Enabled Multi-Beam Satellite Systems: Joint Optimization to Overcome Offered-Requested Data Mismatches
Wang, Anyue UL; Lei, Lei UL; Lagunas, Eva UL et al

in IEEE Transactions on Vehicle Technology (2020)

Detailed reference viewed: 101 (16 UL)
Full Text
Peer Reviewed
See detailTraffic Simulator for Multibeam Satellite Communication Systems
Al-Hraishawi, Hayder UL; Lagunas, Eva UL; Chatzinotas, Symeon UL

Scientific Conference (2020, October 20)

Assume that a multibeam satellite communication system is designed from scratch to serve a particular area with maximal resource utilization and to satisfactorily accommodate the expected traffic demand ... [more ▼]

Assume that a multibeam satellite communication system is designed from scratch to serve a particular area with maximal resource utilization and to satisfactorily accommodate the expected traffic demand. The main design challenge here is setting optimal system parameters such as number of serving beams, beam directions and sizes, and transmit power. This paper aims at developing a tool, multibeam satellite traffic simulator, that helps addressing these fundamental challenges, and more importantly, provides an understanding to the spatial-temporal traffic pattern of satellite networks in large-scale environments. Specifically, traffic demand distribution is investigated by processing credible datasets included three major input categories of information: (i) population distribution for broadband Fixed Satellite Services (FSS), (ii) aeronautical satellite communications, and (iii) vessel distribution for maritime services. This traffic simulator combines this three-dimensional information in addition to time, locations of terminals, and traffic demand. Moreover, realistic satellite beam patterns have been considered in this work, and thus, an algorithm has been proposed to delimit the coverage boundaries of each satellite beam, and then compute the heterogeneous traffic demand at the footprint of each beam. Furthermore, another algorithm has been developed to capture the inherent attributes of satellite channels and the effects of multibeam interference. Data-driven modeling for satellite traffic is crucial nowadays to design innovative communication systems, e.g. precoding and beam hopping, and to devise efficient resource management algorithms. [less ▲]

Detailed reference viewed: 152 (1 UL)
Full Text
Peer Reviewed
See detailRadio Resource Management Techniques for Multibeam Satellite Systems
Kisseleff, Steven UL; Lagunas, Eva UL; Abdu, Tedros Salih UL et al

in IEEE Communications Letters (2020)

Next–generation of satellite communication (SatCom) networks are expected to support extremely high data rates for a seamless integration into future large satellite-terrestrial networks. In view of the ... [more ▼]

Next–generation of satellite communication (SatCom) networks are expected to support extremely high data rates for a seamless integration into future large satellite-terrestrial networks. In view of the coming spectral limitations, the main challenge is to reduce the cost (satellite launch and operation) per bit, which can be achieved by enhancing the spectral efficiencies. In addition, the capability to quickly and flexibly assign radio resources according to the traffic demand distribution has become a must for future multibeam broadband satellite systems. This article presents the radio resource management problems encountered in the design of future broadband SatComs and provides a comprehensive overview of the available techniques to address such challenges. Firstly, we focus on the demand matching formulation of the power and bandwidth assignment. Secondly, we present the scheduling design in practical multibeam satellite systems. Finally, a number of future challenges and the respective open research topics are described. [less ▲]

Detailed reference viewed: 74 (12 UL)
Full Text
Peer Reviewed
See detailWeighted Sum-SINR and Fairness Optimization for SWIPT-Multigroup Multicasting Systems with Heterogeneous Users
Gautam, Sumit UL; Lagunas, Eva UL; Sharma, Shree Krishna UL et al

in IEEE Open Journal of the Communications Society (2020)

The development of next generation wireless communication systems focuses on the expansion of existing technologies, while ensuring an accord between various devices within a system. In this paper, we ... [more ▼]

The development of next generation wireless communication systems focuses on the expansion of existing technologies, while ensuring an accord between various devices within a system. In this paper, we target the aspect of precoder design for simultaneous wireless information and power transmission (SWIPT) in a multi-group (MG) multicasting (MC) framework capable of handling heterogeneous types of users, viz., information decoding (ID) specific, energy harvesting (EH) explicit, and/or both ID and EH operations concurrently. Precoding is a technique well-known for handling the inter-user interference in multi-user systems, however, the joint design with SWIPT is not yet fully exploited. Herein, we investigate the potential benefits of having a dedicated precoder for the set of users with EH demands, in addition to the MC precoding. We study the system performance of the aforementioned system from the perspectives of weighted sum of signal-to-interference-plus-noise-ratio (SINR) and fairness. In this regard, we formulate the precoder design problems for (i) maximizing the weighted sum of SINRs at the intended users and (ii) maximizing the minimum of SINRs at the intended users; both subject to the constraints on minimum (non-linear) harvested energy, an upper limit on the total transmit power and a minimum SINR required to close the link. We solve the above-mentioned problems using distinct iterative algorithms with the help of semi-definite relaxation (SDR) and slack-variable replacement (SVR) techniques, following suitable transformations pertaining the problem convexification. The main novelty of the proposed approach lies in the ability to jointly design the MC and EH precoders for serving the heterogeneously classified ID and EH users present in distinct groups, respectively. We illustrate the comparison between the proposed weighted sum-SINR and fairness models via simulation results, carried out under various parameter values and operating conditions. [less ▲]

Detailed reference viewed: 60 (12 UL)
Full Text
Peer Reviewed
See detailCarrier Aggregation in Satellite Communications: Impact and Performance Study
Kibria, Mirza; Lagunas, Eva UL; Maturo, Nicola UL et al

in IEEE Open Journal of the Communications Society (2020)

Detailed reference viewed: 64 (7 UL)
Full Text
Peer Reviewed
See detailBeam Illumination Pattern Design in Satellite Networks: Learning and Optimization for Efficient Beam Hopping
Lei, Lei UL; Lagunas, Eva UL; Yuan, Yaxiong UL et al

in IEEE Access (2020)

Beam hopping (BH) is considered to provide a high level of flexibility to manage irregular and time-varying traffic requests in future multi-beam satellite systems. In BH optimization, adopting ... [more ▼]

Beam hopping (BH) is considered to provide a high level of flexibility to manage irregular and time-varying traffic requests in future multi-beam satellite systems. In BH optimization, adopting conventional iterative heuristics may have their own limitations in providing timely solutions, and directly using data-driven technique to approximate optimization variables may lead to constraint violation and degraded performance. In this paper, we explore a combined learning-and-optimization (L&O) approach to provide an efficient, feasible, and near-optimal solution. The investigations are from the following aspects: 1) Integration ofBH optimization and learning techniques; 2) Features to be learned in BH design; 3) How to address the feasibility issue incurred by machine learning. We provide numerical results and analysis to show that the learning component in L&O significantly accelerates the procedure of identifying promising BH patterns, resulting in reduced computing time from seconds/minutes to milliseconds level. The identified learning feature enables high accuracy in predictions. In addition, the optimization component in L&O guarantees the solution’s feasibility and improves the overall performance with around 5% gap to the optimum. [less ▲]

Detailed reference viewed: 68 (10 UL)
Full Text
Peer Reviewed
See detailPerceptive Packet Scheduling for Carrier Aggregation in Satellite Communication Systems
Al-Hraishawi, Hayder UL; Maturo, Nicola UL; Lagunas, Eva UL et al

in IEEE International Conference on Communications, June 2020. (2020, June)

Detailed reference viewed: 144 (1 UL)
Full Text
Peer Reviewed
See detailSuccessive Convex Approximation for Transmit Power Minimization in SWIPT-Multicast Systems
Gautam, Sumit UL; Lagunas, Eva UL; Kisseleff, Steven UL et al

Scientific Conference (2020, June)

We propose a novel technique for total transmit power minimization and optimal precoder design in wireless multi-group (MG) multicasting (MC) systems. The considered framework consists of three different ... [more ▼]

We propose a novel technique for total transmit power minimization and optimal precoder design in wireless multi-group (MG) multicasting (MC) systems. The considered framework consists of three different systems capable of handling heterogeneous user types viz., information decoding (ID) specific users with conventional receiver architectures, energy harvesting (EH) only users with non-linear EH module, and users with joint ID and EH capabilities having separate units for the two operations, respectively. Each user is categorized under unique group(s), which can be of MC type specifically meant for ID users, and/or an energy group consisting of EH explicit users. The joint ID and EH users are a part of the (last) EH group as well as any one of the MC groups distinctly. In this regard, we formulate an optimization problem to minimize the total transmit power with optimal precoder designs for the three aforementioned scenarios, under constraints on minimum signal-to-interference-plus-noise ratio and harvested energy by the users with respective demands. The problem may be adapted to the well-known semi-definite program, which can be typically solved via relaxation of rank-1 constraint. However, the relaxation of this constraint may in some cases lead to performance degradation, which increases with the rank of the solution obtained from the relaxed problem. Hence, we develop a novel technique motivated by the feasible-point pursuit and successive convex approximation method in order to address the rank-related issue. The benefits of the proposed method are illustrated under various operating conditions and parameter values, with comparison between the three above-mentioned scenarios. [less ▲]

Detailed reference viewed: 125 (19 UL)
Full Text
Peer Reviewed
See detailDeep Learning for Beam Hopping in Multibeam Satellite Systems
Lei, Lei UL; Lagunas, Eva UL; Yuan, Yaxiong UL et al

in IEEE 91st Vehicular Technology Conference (VTC2020-Spring) (2020, May)

Detailed reference viewed: 149 (30 UL)
Full Text
Peer Reviewed
See detailJoint Optimization for PS-based SWIPT Multiuser Systems with Non-linear Energy Harvesting
Vu, Thang Xuan UL; Chatzinotas, Symeon UL; Gautam, Sumit UL et al

in IEEE Wireless Communications and Networking Conference (WCNC), Seoul, 25-38 May 2020 (2020, May)

In this paper, we investigate the performance of simultaneous wireless information and power transfer (SWIPT) multiuser systems, in which a base station serves a set of users with both information and ... [more ▼]

In this paper, we investigate the performance of simultaneous wireless information and power transfer (SWIPT) multiuser systems, in which a base station serves a set of users with both information and energy simultaneously via a power splitting (PS) mechanism. To capture realistic scenarios, a nonlinear energy harvesting (EH) model is considered. In particular, we jointly design the PS factors and the beamforming vectors in order to maximize the total harvested energy, subjected to rate requirements and a total transmit power budget. To deal with the inherent non-convexity of the formulated problem, an iterative optimization algorithm is proposed based on the inner approximation method and semidefinite relaxation (SDR), whose convergence is theoretically guaranteed. Numerical results show that the proposed scheme significantly outperforms the baseline max-min based SWIPT multicast and fixed-power PS designs. [less ▲]

Detailed reference viewed: 134 (0 UL)
Full Text
Peer Reviewed
See detailTransmit Beamforming Design with Received-Interference Power Constraints: The Zero-Forcing Relaxation
Lagunas, Eva UL; Perez-Neira, Ana; Lagunas, Miguel Angel et al

in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, May 2020 (2020, May)

Detailed reference viewed: 67 (8 UL)
Full Text
Peer Reviewed
See detailA RAN Resource Slicing Mechanism for Multiplexing of eMBB and URLLC Services in OFDMA based 5G Wireless Networks
Korrai, Praveenkumar UL; Lagunas, Eva UL; Sharma, Shree Krishna UL et al

in IEEE Access (2020)

Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two ... [more ▼]

Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two services on the same wireless infrastructure leads to a challenging resource allocation problem due to their heterogeneous specifications. To address this problem, slicing has emerged as an architecture that enables a logical network with specific radio access functionality to each of the supported services on the same network infrastructure. The allocation of radio resources to each slice according to their requirements is a fundamental part of the network slicing that is usually executed at the radio access network (RAN). In this work, we formulate the RAN resource allocation problem as a sum-rate maximization problem subject to the orthogonality constraint (i.e., service isolation), latency-related constraint and minimum rate constraint while maintaining the reliability constraint with the incorporation of adaptive modulation and coding (AMC). However, the formulated problem is not mathematically tractable due to the presence of a step-wise function associated with the AMC and a binary assignment variable. Therefore, to solve the proposed optimization problem, first, we relax the mathematical intractability of AMC by using an approximation of the non-linear AMC achievable throughput, and next, the binary constraint is relaxed to a box constraint by using the penalized reformulation of the problem. The result of the above two-step procedure provides a close-to-optimal solution to the original optimization problem. Furthermore, to ease the complexity of the optimization-based scheduling algorithm, a low-complexity heuristic scheduling scheme is proposed for the efficient multiplexing of URLLC and eMBB services. Finally, the effectiveness of the proposed optimization and heuristic schemes is illustrated through extensive numerical simulations. [less ▲]

Detailed reference viewed: 142 (11 UL)
Full Text
Peer Reviewed
See detailCarrier and Power Assignment for Flexible Broadband GEO Satellite Communications System
Abdu, Tedros Salih UL; Lagunas, Eva UL; Kisseleff, Steven et al

in PIMRC 2020 Proceedings (2020)

Current multi-beam GEO satellite systems operate under a limited frequency reuse configuration and considering uniform power assignment across beams. The latter has been shown to be inefficient in ... [more ▼]

Current multi-beam GEO satellite systems operate under a limited frequency reuse configuration and considering uniform power assignment across beams. The latter has been shown to be inefficient in matching the geographic distribution of the traffic demand. In this context, next generation of broadband GEO satellite systems will be equipped with more flexible and reconfigurable payloads, facilitating on-demand resource allocation. In this paper, we consider both carrier and power assignment to match the requested beam demands while minimizing the total transmit power and the total utilized bandwidth. A novel optimization problem is formulated and, given its non-convex structure, we divide the problem into two tractable sub-problems. First, we estimate the number of adjacent frequency carriers required for each beam to satisfy its demand and, subsequently, we optimize the power allocation based on the previously assigned carriers. We validate the proposed method with extensive numerical results, which demonstrate its efficiency with respect to benchmark strategies. [less ▲]

Detailed reference viewed: 250 (68 UL)
Full Text
Peer Reviewed
See detailDealing with Non-Uniform Demands in Flexible GEO Satellites: The Carrier Aggregation Perspective
Lagunas, Eva UL; Kibria, Mirza; Al-Hraishawi, Hayder UL et al

in 10th Advanced Satellite Multimedia Systems Conference (ASMS) and 16th Signal Processing for Space Communications Workshop (SPSC), October 2020. (2020)

Detailed reference viewed: 63 (7 UL)
Full Text
Peer Reviewed
See detailLink Adaptation and SINR errors in Practical Multicast Multibeam Satellite Systems with Linear Precoding
Tato, Anxo; Andrenacci, Stefano UL; Lagunas, Eva UL et al

in International Journal of Satellite Communications and Networking (2020)

Detailed reference viewed: 71 (9 UL)
Full Text
Peer Reviewed
See detailJoint Power and Resource Block Allocation for Mixed-Numerology-Based 5G Downlink Under Imperfect CSI
Korrai, Praveenkumar UL; Lagunas, Eva UL; Bandi, Ashok UL et al

in IEEE Open Journal of the Communications Society (2020), 1

Fifth-generation (5G) of wireless networks are expected to accommodate different services with contrasting quality of service (QoS) requirements within a common physical infrastructure in an efficient way ... [more ▼]

Fifth-generation (5G) of wireless networks are expected to accommodate different services with contrasting quality of service (QoS) requirements within a common physical infrastructure in an efficient way. In this article, we address the radio access network (RAN) slicing problem and focus on the three 5G primary services, namely, enhanced mobile broadband (eMBB), ultra-reliable and lowlatency communications (URLLC) and massive machine-type communications (mMTC). In particular, we formulate the joint allocation of power and resource blocks to the heterogeneous users in the downlink targeting the transmit power minimization and by considering mixed numerology-based frame structures. Most importantly, the proposed scheme does not only consider the heterogeneous QoS requirements of each service, but also the queue status of each user during the scheduling of resource blocks. In addition, imperfect Channel State Information (CSI) is considered by including an outage probabilistic constraint into the formulation. The resulting non-convex problem is converted to a more tractable problem by exploiting Big-M formulation, probabilistic to non-probabilistic transformation, binary relaxation and successive convex approximation (SCA). The proposed solution is evaluated for different mixed-numerology resource grids within the context of strict slice-isolation and slice-aware radio resource management schemes via extensive numerical simulations. [less ▲]

Detailed reference viewed: 74 (9 UL)
Full Text
Peer Reviewed
See detailCarrier Aggregation in Multi-Beam High Throughput Satellite Systems
Kibria, Mirza UL; Lagunas, Eva UL; Maturo, Nicola UL et al

in Carrier Aggregation in Multi-Beam High Throughput Satellite Systems (2019, December 10)

Carrier Aggregation (CA) is an integral part of current terrestrial networks. Its ability to enhance the peak data rate, to efficiently utilize the limited available spectrum resources and to satisfy the ... [more ▼]

Carrier Aggregation (CA) is an integral part of current terrestrial networks. Its ability to enhance the peak data rate, to efficiently utilize the limited available spectrum resources and to satisfy the demand for data-hungry applications has drawn large attention from different wireless network communities. Given the benefits of CA in the terrestrial wireless environment, it is of great interest to analyze and evaluate the potential impact of CA in the satellite domain. In this paper, we study CA in multi-beam high throughput satellite systems. We consider both inter-transponder and intra-transponder CA at the satellite payload level of the communication stack, and we address the problem of carrier-user assignment assuming that multiple users can be multiplexed in each carrier. The transmission parameters of different carriers are generated considering the transmission characteristics of carriers in different transponders. In particular, we propose a flexible carrier allocation approach for a CA enabled multi-beam satellite system targeting a proportionally fair user demand satisfaction. Simulation results and analysis shed some light on this rather unexplored scenario and demonstrate the feasibility of the CA in satellite communication systems. [less ▲]

Detailed reference viewed: 45 (3 UL)