![]() ; ; et al in Microbiome (2023), 11(1), 46 BACKGROUND: Infections with SARS-CoV-2 have a pronounced impact on the gastrointestinal tract and its resident microbiome. Clear differences between severe cases of infection and healthy individuals have ... [more ▼] BACKGROUND: Infections with SARS-CoV-2 have a pronounced impact on the gastrointestinal tract and its resident microbiome. Clear differences between severe cases of infection and healthy individuals have been reported, including the loss of commensal taxa. We aimed to understand if microbiome alterations including functional shifts are unique to severe cases or a common effect of COVID-19. We used high-resolution systematic multi-omic analyses to profile the gut microbiome in asymptomatic-to-moderate COVID-19 individuals compared to a control group. RESULTS: We found a striking increase in the overall abundance and expression of both virulence factors and antimicrobial resistance genes in COVID-19. Importantly, these genes are encoded and expressed by commensal taxa from families such as Acidaminococcaceae and Erysipelatoclostridiaceae, which we found to be enriched in COVID-19-positive individuals. We also found an enrichment in the expression of a betaherpesvirus and rotavirus C genes in COVID-19-positive individuals compared to healthy controls. CONCLUSIONS: Our analyses identified an altered and increased infective competence of the gut microbiome in COVID-19 patients. Video Abstract. [less ▲] Detailed reference viewed: 75 (2 UL)![]() Kunath, Benoît ![]() ![]() ![]() in Microbiome (2022) Background: Alterations to the gut microbiome have been linked to multiple chronic diseases. However, the drivers of such changes remain largely unknown. The oral cavity acts as a major route of exposure ... [more ▼] Background: Alterations to the gut microbiome have been linked to multiple chronic diseases. However, the drivers of such changes remain largely unknown. The oral cavity acts as a major route of exposure to exogenous factors including pathogens, and processes therein may affect the communities in the subsequent compartments of the gastrointestinal tract. Here, we perform strain‑resolved, integrated meta‑genomic, transcriptomic, and proteomic analyses of paired saliva and stool samples collected from 35 individuals from eight families with multiple cases of type 1 diabetes mellitus (T1DM). Results: We identified distinct oral microbiota mostly reflecting competition between streptococcal species. More specifically, we found a decreased abundance of the commensal Streptococcus salivarius in the oral cavity of T1DM individuals, which is linked to its apparent competition with the pathobiont Streptococcus mutans. The decrease in S. salivarius in the oral cavity was also associated with its decrease in the gut as well as higher abundances in facultative anaerobes including Enterobacteria. In addition, we found evidence of gut inflammation in T1DM as reflected in the expression profiles of the Enterobacteria as well as in the human gut proteome. Finally, we were able to follow transmitted strain‑variants from the oral cavity to the gut at the individual omic levels, highlighting not only the transfer, but also the activity of the transmitted taxa along the gastrointestinal tract. Conclusions: Alterations of the oral microbiome in the context of T1DM impact the microbial communities in the lower gut, in particular through the reduction of “mouth‑to‑gut” transfer of Streptococcus salivarius. Our results indicate that the observed oral‑cavity‑driven gut microbiome changes may contribute towards the inflammatory processes involved in T1DM. Through the integration of multi‑omic analyses, we resolve strain‑variant “mouth‑to‑gut” transfer in a disease context. [less ▲] Detailed reference viewed: 42 (3 UL)![]() Aho, Velma ![]() ![]() in Cell Host and Microbe (2022), 30(9), 1340 The human gut microbiome is intricately connected to health and disease. Microbiome-derived molecules are implicated in many chronic diseases involving inflammation. Herein, we summarize the diverse ... [more ▼] The human gut microbiome is intricately connected to health and disease. Microbiome-derived molecules are implicated in many chronic diseases involving inflammation. Herein, we summarize the diverse complex of such immunogenic molecules, including nucleic acids, (poly)peptides, structural molecules, and metabolites. The interactions between this “expobiome” and human immune pathways are specifically illustrated in the context of chronic diseases. [less ▲] Detailed reference viewed: 65 (4 UL)![]() Wilmes, Paul ![]() ![]() in Cell Host and Microbe (2022), 30(9), 1201-1206 The human gut microbiome produces a functional complex of biomolecules, including nucleic acids, (poly) peptides, structural molecules, and metabolites. This impacts human physiology in multiple ways ... [more ▼] The human gut microbiome produces a functional complex of biomolecules, including nucleic acids, (poly) peptides, structural molecules, and metabolites. This impacts human physiology in multiple ways, especially by triggering inflammatory pathways in disease. At present, much remains to be learned about the identity of key effectors and their causal roles. [less ▲] Detailed reference viewed: 48 (1 UL)![]() Brunhoferova, Hana ![]() ![]() ![]() in Sustainability (2022), 14(7), 3944 Background: Micropollutants in bodies of water represent many challenges. We addressedthese challenges by the application of constructed wetlands, which represent advanced treatmenttechnology for the ... [more ▼] Background: Micropollutants in bodies of water represent many challenges. We addressedthese challenges by the application of constructed wetlands, which represent advanced treatmenttechnology for the removal of micropollutants from water. However, which mechanisms specificallycontribute to the removal efficiency often remains unclear. Methods: Here, we focus on the removalof 27 micropollutants by bioremediation. For this, macrophytesPhragmites australis,Iris pseudacorusandLythrum salicariawere taken from established wetlands, and a special experimental set-up wasdesigned. In order to better understand the impact of the rhizosphere microbiome, we determinedthe microbial composition using 16S rRNA gene sequencing and investigated the role of identifiedgenera in the micropollutant removal of micropollutants. Moreover, we studied the colonizationof macrophyte roots by arbuscular mycorrhizal fungi, which are known for their symbiotic rela-tionship with plants. This symbiosis could result in increased removal of present micropollutants.Results: We foundIris pseudacorusto be the most successful bioremediative system, as it removed22 compounds, including persistent ones, with more than 80% efficiency. The most abundant generathat contributed to the removal of micropollutants werePseudomonas, Flavobacterium, Variovorax,Methylotenera, Reyranella, AmaricoccusandHydrogenophaga.Iris pseudacorusexhibited the highest colo-nization rate (56%). Conclusions: Our experiments demonstrate the positive impact of rhizospheremicroorganisms on the removal of micropollutants. [less ▲] Detailed reference viewed: 61 (5 UL)![]() ; Aho, Velma ![]() ![]() E-print/Working paper (2022) Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial ... [more ▼] Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial taxa, changes to viral and archaeal populations have also been observed. Mechanistic links between gut microbes and PD pathogenesis remain elusive but could involve molecules that promote α-synuclein aggregation. Here, we show that 2-hydroxypyridine (2-HP) represents a key molecule for the pathogenesis of PD. We observe significantly elevated 2-HP levels in faecal samples from patients with PD or its prodrome, idiopathic REM sleep behaviour disorder (iRBD), compared to healthy controls. 2-HP is correlated with the archaeal species Methanobrevibacter smithii and with genes involved in methane metabolism, and it is detectable in isolate cultures of M. smithii. We demonstrate that 2-HP is selectively toxic to transgenic α-synuclein overexpressing yeast and increases α-synuclein aggregation in a yeast model as well as in human induced pluripotent stem cell derived enteric neurons. It also exacerbates PD-related motor symptoms, α-synuclein aggregation, and striatal degeneration when injected intrastriatally in transgenic mice overexpressing human α-synuclein. Our results highlight the effect of an archaeal molecule in relation to the gut-brain axis, which is critical for the diagnosis, prognosis, and treatment of PD. [less ▲] Detailed reference viewed: 133 (12 UL)![]() de Saedeleer, Bianca ![]() ![]() ![]() in ISME Communications (2021) Detailed reference viewed: 98 (11 UL)![]() Galata, Valentina ![]() ![]() ![]() in Briefings in Bioinformatics (2021) Real-world evaluations of metagenomic reconstructions are challenged by distinguishing reconstruction artifacts from genes and proteins present in situ. Here, we evaluate short-read-only, long-read-only ... [more ▼] Real-world evaluations of metagenomic reconstructions are challenged by distinguishing reconstruction artifacts from genes and proteins present in situ. Here, we evaluate short-read-only, long-read-only and hybrid assembly approaches on four different metagenomic samples of varying complexity. We demonstrate how different assembly approaches affect gene and protein inference, which is particularly relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic and metaproteomic data to assess the metagenomic data-based protein predictions. Our findings pave the way for critical assessments of metagenomic reconstructions. We propose a reference-independent solution, which exploits the synergistic effects of multi-omic data integration for the in situ study of microbiomes using long-read sequencing data. [less ▲] Detailed reference viewed: 93 (7 UL)![]() de Nies, Laura ![]() ![]() in Microbiome (2021) Background Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial ... [more ▼] Background Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial resistance genes allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome compositions, functioning, and disease, it is essential to identify virulence factors and antimicrobial resistance genes in situ. At present, there is a clear lack of computational approaches to simultaneously identify these factors in metagenomic datasets. Results Here, we present PathoFact, a tool for the contextualized prediction of virulence factors, bacterial toxins, and antimicrobial resistance genes with high accuracy (0.921, 0.832 and 0.979, respectively) and specificity (0.957, 0.989 and 0.994). We evaluate the performance of PathoFact on simulated metagenomic datasets and perform a comparison to two other general workflows for the analysis of metagenomic data. PathoFact outperforms all existing workflows in predicting virulence factors and toxin genes. It performs comparably to one pipeline regarding the prediction of antimicrobial resistance while outperforming the others. We further demonstrate the performance of PathoFact on three publicly available case-control metagenomic datasets representing an actual infection as well as chronic diseases in which either pathogenic potential or bacterial toxins are hypothesized to play a role. In each case, we identify virulence factors and AMR genes which differentiated between the case and control groups, thereby revealing novel gene associations with the studied diseases. Conclusion PathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence factors, bacterial toxins, and antimicrobial resistance genes in metagenomic data. Additionally, our tool combines the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, PathoFact’s modules for virulence factors, toxins, and antimicrobial resistance genes can be applied independently, thereby making it a flexible and versatile tool. PathoFact, its models, and databases are freely available at https://pathofact.lcsb.uni.lu. [less ▲] Detailed reference viewed: 153 (6 UL)![]() Martinez Arbas, Susana ![]() ![]() in Nature Microbiology (2021), 6(1), 123--135 Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We ... [more ▼] Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE–host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR–Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid–host and phage–host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant ‘Candidatus Microthrix parvicella’ population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes. [less ▲] Detailed reference viewed: 39 (3 UL)![]() ; ; Laczny, Cedric Christian ![]() in Microorganisms (2020) Detailed reference viewed: 97 (4 UL)![]() Martinez Arbas, Susana ![]() in Nature Microbiology (2020) Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We ... [more ▼] Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE–host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR–Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid–host and phage–host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant ‘Candidatus Microthrix parvicella’ population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes. [less ▲] Detailed reference viewed: 180 (9 UL)![]() ; Martinez Arbas, Susana ![]() in Nature Communications (2020) The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche ... [more ▼] The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts. [less ▲] Detailed reference viewed: 206 (22 UL)![]() Martinez Arbas, Susana ![]() ![]() Poster (2018, October 19) Detailed reference viewed: 162 (16 UL)![]() Trezzi, Jean-Pierre ![]() ![]() ![]() Poster (2018, October) Detailed reference viewed: 156 (26 UL)![]() Martinez Arbas, Susana ![]() Poster (2018, September 11) Detailed reference viewed: 120 (11 UL)![]() Herold, Malte ![]() ![]() ![]() Poster (2018, August) Microbial communities are strongly shaped by the niche breadths of their constituent populations. However, a detailed understanding of microbial niche ecology is typically lacking. Integrated multi-omic ... [more ▼] Microbial communities are strongly shaped by the niche breadths of their constituent populations. However, a detailed understanding of microbial niche ecology is typically lacking. Integrated multi-omic analyses of host- or environment-derived samples offer the prospect of resolving fundamental and realised niches in situ. In turn, this is considered a prerequisite for niche engineering in order to drive an individual population or a community towards a specific phenotype, e.g., improvement of a biotechnological process. Here, we sampled floating islets on the surface of an activated sludge tank in a time-series spanning 51 time-points over 14 months. Multi-omics datasets (metagenomics, metatranscriptomics, metaproteomics, and (meta-)metabolomics) were generated for all time-points. Leveraging nucleotide sequencing data, we analyzed the community structure and reconstructed genomes for specific populations of interest. Moreover, based on their metabolic potential, three major groups emerged, serving as proxies for their respective fundamental niches . Time-resolved linkage of the proteomic and transcriptomic data to the reconstructed genomes revealed a fine-grained picture of niche realization. In particular, environmental factors (temperature, metabolites, oxygen) were significantly associated with gene expression of individual populations. Furthermore, we subjected the community to controlled oxygen conditions (stable or dynamic) in a bioreactor experiment and measured the transcriptomic response. Our results suggest short-term adaptations of populations of interest with respect to lipid metabolism, among other pathways. In conclusion, our work demonstrates how longitudinal multi-omic datasets can be integrated in order to further our understanding of microbial niche ecology within a biotechnological process with potential applications beyond waste water treatment. [less ▲] Detailed reference viewed: 372 (23 UL)![]() Trezzi, Jean-Pierre ![]() ![]() ![]() Poster (2018, August) Detailed reference viewed: 178 (24 UL)![]() Muller, Emilie ![]() ![]() in Standards in Genomic Sciences (2017), 12(64), The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome ... [more ▼] The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and annotation together with a general physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater. [less ▲] Detailed reference viewed: 223 (13 UL)![]() Wampach, Linda ![]() ![]() in Frontiers in Microbiology (2017) Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial ... [more ▼] Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract. [less ▲] Detailed reference viewed: 488 (22 UL) |
||