References of "Brida, Daniele 50031325"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailUltrafast multidimensional spectroscopy with field resolution and noncollinear geometry at mid-infrared frequencies
Deckert, Thomas UL; Allerbeck, Jonas; Kurihara, Takayuki et al

in New Journal of Physics (2022)

Energetic correlations and their dynamics govern the fundamental properties of condensed matter materials. Ultrafast multidimensional spectroscopy in the mid infrared is an advanced technique to study ... [more ▼]

Energetic correlations and their dynamics govern the fundamental properties of condensed matter materials. Ultrafast multidimensional spectroscopy in the mid infrared is an advanced technique to study such coherent low-energy dynamics. The intrinsic many-body phenomena in functional solid-state materials, in particular few-layer samples, remain widely unexplored to this date, because complex and weak sample responses demand versatile and sensitive detection. Here, we present a novel setup for ultrafast multidimensional spectroscopy with noncollinear geometry and complete field resolution in the 15–40 THz range. Electric fields up to few-100 kV cm−1 drive coherent dynamics in a perturbative regime, and an advanced modulation scheme allows to detect nonlinear signals down to a few tens of V cm−1 entirely background-free with high sensitivity and full control over the geometric phase-matching conditions. Our system aims at the investigation of correlations and many-body interactions in condensed matter systems at low energy. Benchmark measurements on bulk indium antimonide reveal a strong six-wave mixing signal and map ultra- fast changes of the band structure with access to amplitude and phase information. Our results pave the way towards the investigation of functional thin film materials and few-layer samples. [less ▲]

Detailed reference viewed: 87 (6 UL)
Full Text
Peer Reviewed
See detailMagneto-optical activity in nonmagnetic hyperbolic nanoparticles
Kuttruff, Joel; Gabbani, Alessio; Petrucci, Gaia et al

in Physical Review Letters (2021), 127

Active nanophotonics can be realized by controlling the optical properties of materials with external magnetic fields. Here, we explore the influence of optical anisotropy on the magneto-optical activity ... [more ▼]

Active nanophotonics can be realized by controlling the optical properties of materials with external magnetic fields. Here, we explore the influence of optical anisotropy on the magneto-optical activity in non-magnetic hyperbolic nanoparticles. We demonstrate that the magneto-optical response is driven by fundamental electric and magnetic dipole modes induced by the hyperbolic dispersion. Magnetic circular dichroism experiments confirm the theoretical predictions and reveal tunable magneto-optical activity across the visible and near infrared spectral range. [less ▲]

Detailed reference viewed: 146 (12 UL)
Full Text
Peer Reviewed
See detailField-resolved detection of the temporal response of a single plasmonic antenna in the mid infrared
Fischer, Marco P.; Maccaferri, Nicolò UL; Gallacher, Kevin et al

in Optica (2021), 8(6), 898-903

Unveiling the spatial and temporal dynamics of a light pulse interacting with nanosized objects is of extreme importance to widen our understanding of how photons interact with matter at the nanoscale and ... [more ▼]

Unveiling the spatial and temporal dynamics of a light pulse interacting with nanosized objects is of extreme importance to widen our understanding of how photons interact with matter at the nanoscale and trigger physical and photochemical phenomena. An ideal platform to study light–matter interactions with an unprecedented spatial resolution is represented by plasmonics, which enables an extreme confinement of optical energy into sub-wavelength volumes. The ability to resolve and control the dynamics of this energy confinement on the time scale of a single optical cycle is at the ultimate frontier towards a full control of nanoscale phenomena. Here, we resolve in the time domain the linear behavior of a single germanium plasmonic antenna in the mid-infrared by measuring the complex optical field response in amplitude and phase with sub-optical-cycle precision, with the promise to extend the observation of light–matter interactions in the time domain to single quantum objects. Accessing this fundamental information opens a plethora of opportunities in a variety of research areas based on plasmon-mediated photonic processes and their coherent control, such as plasmon-enhanced chemical reactions and energy harvesting. [less ▲]

Detailed reference viewed: 151 (11 UL)
Full Text
Peer Reviewed
See detailActive control of ultrafast electron dynamics in plasmonic gaps using an applied bias
Ludwig, Markus; K. Kazansky, Andrey; Aguirregabiria, Garikoitz et al

in Physical Review. B, Condensed Matter (2020)

In this joint experimental and theoretical study we demonstrate coherent control of the optical field emission and electron transport in plasmonic gaps subjected to intense single-cycle laser pulses. Our ... [more ▼]

In this joint experimental and theoretical study we demonstrate coherent control of the optical field emission and electron transport in plasmonic gaps subjected to intense single-cycle laser pulses. Our results show that an external THz field or a minor dc bias, orders of magnitude smaller than the optical bias owing to the laser field, allows one to modulate and direct the electron photocurrents in the gap of a connected nanoantenna operating as an ultrafast nanoscale vacuum diode for lightwave electronics. Using time-dependent density functional theory calculations we elucidate the main physical mechanisms behind the observed effects and show that an applied dc field significantly modifies the optical field emission and quiver motion of photoemitted electrons within the gap. The quantum many-body theory reproduces the measured net electron transport in the experimental device, which allows us to establish a paradigm for controlling nanocircuits at petahertz frequencies [less ▲]

Detailed reference viewed: 127 (32 UL)
Full Text
Peer Reviewed
See detailUltrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities
Kuttruff, Joel; Garoli, Denis; Allerbeck, Jonas et al

in Communications Physics (2020), 3

Ultrafast control of light−matter interactions is fundamental in view of new technological frontiers of information processing. However, conventional optical elements are either static or feature ... [more ▼]

Ultrafast control of light−matter interactions is fundamental in view of new technological frontiers of information processing. However, conventional optical elements are either static or feature switching speeds that are extremely low with respect to the time scales at which it is possible to control light. Here, we exploit the artificial epsilon-near-zero (ENZ) modes of a metal-insulator-metal nanocavity to tailor the linear photon absorption of our system and realize a nondegenerate all-optical ultrafast modulation of the reflectance at a specific wavelength. Optical pumping of the system at its high energy ENZ mode leads to a strong redshift of the low energy mode because of the transient increase of the local dielectric function, which leads to a sub-3-ps control of the reflectance at a specific wavelength with a relative modulation depth approaching 120%. [less ▲]

Detailed reference viewed: 137 (21 UL)
Full Text
Peer Reviewed
See detailControl of excitonic absorption by thickness variation in few-layer GaSe
Budweg, Arne; Yadav, Dinesh; Grupp, Alexander et al

in Physical Review. B (2019), 100(4),

We control the thickness of GaSe on the level of individual layers and study the corresponding optical absorption via highly sensitive differential transmission measurements. Suppression of excitonic ... [more ▼]

We control the thickness of GaSe on the level of individual layers and study the corresponding optical absorption via highly sensitive differential transmission measurements. Suppression of excitonic transitions is observed when the number of layers is smaller than a critical value of 8. Through ab initio modelling we are able to link this behavior to a fundamental change in the band structure that leads to the formation of a valence band shaped as an inverted Mexican hat in thin GaSe. The thickness-controlled modulation of the optical properties provides attractive resources for the development of functional optoelectronic devices based on a single material. [less ▲]

Detailed reference viewed: 78 (6 UL)
Full Text
Peer Reviewed
See detailUltrafast carrier recombination in highly n-doped Ge-on-Si films
Allerbeck, J.; Herbst, A. J.; Yamamoto, Y. et al

in APPLIED PHYSICS LETTERS (2019), 114(24),

We study the femtosecond carrier dynamics of n-type doped and biaxially strained Ge-on-Si films which occurs upon impulsive photoexcitation by means of broadband near-IR transient absorption spectroscopy ... [more ▼]

We study the femtosecond carrier dynamics of n-type doped and biaxially strained Ge-on-Si films which occurs upon impulsive photoexcitation by means of broadband near-IR transient absorption spectroscopy. The modeling of the experimental data takes into account the static donor density in a modified rate equation for the description of the temporal recombination dynamics. The measurements confirm the negligible contribution at a high n-type doping concentration, in the 10(19)cm(-3) range, of Auger processes as compared to defect-related Shockley-Read-Hall recombination. Energy resolved dynamics reveal further insights into the doping-related band structure changes and suggest a reshaping of direct and indirect conduction band valleys to a single effective valley along with a significant spectral broadening of the optical transitions. [less ▲]

Detailed reference viewed: 76 (2 UL)
Full Text
Peer Reviewed
See detailPump-probe spectroscopy study of ultrafast temperature dynamics in nanoporous gold
Ortolani, Michele; Mancini, Andrea; Budweg, Arne et al

in Physical Review. B (2019), 99(3),

We explore the influence of the nanoporous structure on the thermal relaxation of electrons and holes excited by ultrashort laser pulses (similar to 7 fs) in thin gold films. Plasmon decay into hot ... [more ▼]

We explore the influence of the nanoporous structure on the thermal relaxation of electrons and holes excited by ultrashort laser pulses (similar to 7 fs) in thin gold films. Plasmon decay into hot electron-hole pairs results in the generation of a Fermi-Dirac distribution thermalized at a temperature T-e higher than the lattice temperature T-1. The relaxation times of the energy exchange between electrons and lattice, here measured by pump-probe spectroscopy, is slowed down by the nanoporous structure, resulting in much higher peak T-e than for bulk gold films. The electron-phonon coupling constant and the Debye temperature are found to scale with the metal filling factor f and a two-temperature model reproduces the data. The results open the way for electron temperature control in metals by engineering of the nanoporous geometry. [less ▲]

Detailed reference viewed: 97 (4 UL)
See detailField-resolved response of plasmonic antennas
Fischer, Marco P.; Maccaferri, Nicolò UL; Gallacher et al

in Proceedings 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019)

We introduce a new experimental strategy to investigate the transient resonant behavior of plasmonic nanostructures. Our approach allows to access their full-time field-resolved response in amplitude and ... [more ▼]

We introduce a new experimental strategy to investigate the transient resonant behavior of plasmonic nanostructures. Our approach allows to access their full-time field-resolved response in amplitude and phase. [less ▲]

Detailed reference viewed: 67 (1 UL)
Full Text
Peer Reviewed
See detailDynamics of electron-emission currents in plasmonic gaps induced by strong fields
Aguirregabiria, Garikoitz; Marinica, Dana-Codruta; Ludwig, Markus et al

in FARADAY DISCUSSIONS (2019), 214

The dynamics of ultrafast electron currents triggered by femtosecond laser pulse irradiation of narrow gaps in a plasmonic dimer is studied using quantum mechanical Time-Dependent Density Functional ... [more ▼]

The dynamics of ultrafast electron currents triggered by femtosecond laser pulse irradiation of narrow gaps in a plasmonic dimer is studied using quantum mechanical Time-Dependent Density Functional Theory (TDDFT). The electrons are injected into the gap due to the optical field emission from the surfaces of the metal nanoparticles across the junction. Further evolution of the electron currents in the gap is governed by the locally enhanced electric fields. The combination of TDDFT and classical modelling of the electron trajectories allows us to study the quiver motion of the electrons in the gap region as a function of the Carrier Envelope Phase (CEP) of the incident pulse. In particular, we demonstrate the role of the quiver motion in establishing the CEP-sensitive net electric transport between nanoparticles. [less ▲]

Detailed reference viewed: 90 (9 UL)
Full Text
Peer Reviewed
See detailSub-femtosecond electron transport in a nanoscale gap
Ludwig, Markus UL; Aguirregabiria, Garikoitz; Ritzkowsky, Felix et al

in Nature Physics (2019)

The strong fields associated with few-cycle pulses can drive highly nonlinear phenomena, allowing the direct control of electrons in condensed matter systems. In this context, by employing near-infrared ... [more ▼]

The strong fields associated with few-cycle pulses can drive highly nonlinear phenomena, allowing the direct control of electrons in condensed matter systems. In this context, by employing near-infrared single-cycle pulse pairs, we measure interferometric autocorrelations of the ultrafast currents induced by optical field emission at the nanogap of a single plasmonic nanocircuit. The dynamics of this ultrafast electron nanotransport depends on the precise temporal field profile of the optical driving pulse. Current autocorrelations are acquired with sub-femtosecond temporal resolution as a function of both pulse delay and absolute carrier-envelope phase. Quantitative modelling of the experiments enables us to monitor the spatiotemporal evolution of the electron density and currents induced in the system and to elucidate the physics underlying the electron transfer driven by strong optical fields in plasmonic gaps. Specifically, we clarify the interplay between the carrier-envelope phase of the driving pulse, plasmonic resonance and quiver motion. [less ▲]

Detailed reference viewed: 251 (23 UL)
Full Text
Peer Reviewed
See detailPlasmonic mid-infrared third harmonic generation in germanium nanoantennas
Fischer, Marco P.; Riede, Aaron; Gallacher, Kevin et al

in Light: Science and Applications (2018)

Detailed reference viewed: 152 (5 UL)
Full Text
Peer Reviewed
See detailSwitchable dissociation of excitons bound at strained CdTe/CdS interfaces
Enders, Florian; Budweg, Arne; Zeng, Peng et al

in Nanoscale (2018)

Detailed reference viewed: 175 (12 UL)