References of "von Mering, Christian"
     in
Bookmark and Share    
Peer Reviewed
See detailShared components of protein complexes--versatile building blocks or biochemical artefacts?
von Mering, Christian; Bork, Peer; Dandekar, Thomas et al

in BioEssays (2004), 26(12), 1333-43

Protein complexes perform many important functions in the cell. Large-scale studies of protein-protein interactions have not only revealed new complexes but have also placed many proteins into multiple ... [more ▼]

Protein complexes perform many important functions in the cell. Large-scale studies of protein-protein interactions have not only revealed new complexes but have also placed many proteins into multiple complexes. Whilst the advocates of hypothesis-free research touted the discovery of these shared components as new links between diverse cellular processes, critical commentators denounced many of the findings as artefacts, thus questioning the usefulness of large-scale approaches. Here, we survey proteins known to be shared between complexes, as established in the literature, and compare them to shared components found in high-throughput screens. We discuss the various challenges to the identification and functional interpretation of bona fide shared components, namely contaminants, variant and megacomplexes, and transient interactions, and suggest that many of the novel shared components found in high-throughput screens are neither the results of contamination nor central components, but appear to be primarily regulatory links in cellular processes. [less ▲]

Detailed reference viewed: 119 (1 UL)
Full Text
Peer Reviewed
See detailA comprehensive set of protein complexes in yeast: mining large scale protein-protein interaction screens.
Krause, Roland UL; von Mering, Christian; Bork, Peer

in Bioinformatics (2003), 19(15), 1901-8

MOTIVATION: The analysis of protein-protein interactions allows for detailed exploration of the cellular machinery. The biochemical purification of protein complexes followed by identification of ... [more ▼]

MOTIVATION: The analysis of protein-protein interactions allows for detailed exploration of the cellular machinery. The biochemical purification of protein complexes followed by identification of components by mass spectrometry is currently the method, which delivers the most reliable information--albeit that the data sets are still difficult to interpret. Consolidating individual experiments into protein complexes, especially for high-throughput screens, is complicated by many contaminants, the occurrence of proteins in otherwise dissimilar purifications due to functional re-use and technical limitations in the detection. A non-redundant collection of protein complexes from experimental data would be useful for biological interpretation, but manual assembly is tedious and often inconsistent. RESULTS: Here, we introduce a measure to define similarity within collections of purifications and generate a set of minimally redundant, comprehensive complexes using unsupervised clustering. AVAILABILITY: Programs and results are freely available from http://www.bork.embl-heidelberg.de/Docu/purclust/ [less ▲]

Detailed reference viewed: 118 (4 UL)