References of "Zhou, Y"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailrapalogs can promote cancer cell stemness in vitro in a Galectin-1 and H-ras-dependent manner
Posada, IMD; Lectez, B; Sharma, M et al

in Oncotarget (2017), Vol. 8((No. 27)), 44550-44566

Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they ... [more ▼]

Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they complicate drug targeting. Here, we describe a novel H-ras specific feedback, which leads to an inadvertent rapalog induced activation of tumorigenicity in Ras transformed cells. We find that rapalogs specifically increase nanoscale clustering (nanoclustering) of oncogenic H-ras but not K-ras on the plasma membrane. This increases H-ras signaling output, promotes mammosphere numbers in a H-ras-dependent manner and tumor growth in ovo. Surprisingly, also other FKBP12 binders, but not mTor-inhibitors, robustly decrease FKBP12 levels after prolonged (>2 days) exposure. This leads to an upregulation of the nanocluster scaffold galectin-1 (Gal-1), which is responsible for the rapamycin-induced increase in H-ras nanoclustering and signaling output. We provide evidence that Gal-1 promotes stemness features in tumorigenic cells. Therefore, it may be necessary to block inadvertent induction of stemness traits in H-ras transformed cells by specific Gal-1 inhibitors that abrogate its effect on H-ras nanocluster. On a more general level, our findings may add an important mechanistic explanation to the pleiotropic physiological effects that are observed with rapalogs. [less ▲]

Detailed reference viewed: 168 (4 UL)
Full Text
Peer Reviewed
See detailThe complex exogenous RNA spectra in human plasma: an interface with human gut biota?
Wang, K.; Li, H.; Yuan, Y. et al

in PLoS ONE (2012), 7(12),

Human plasma has long been a rich source for biomarker discovery. It has recently become clear that plasma RNA molecules, such as microRNA, in addition to proteins are common and can serve as biomarkers ... [more ▼]

Human plasma has long been a rich source for biomarker discovery. It has recently become clear that plasma RNA molecules, such as microRNA, in addition to proteins are common and can serve as biomarkers. Surveying human plasma for microRNA biomarkers using next generation sequencing technology, we observed that a significant fraction of the circulating RNA appear to originate from exogenous species. With careful analysis of sequence error statistics and other controls, we demonstrated that there is a wide range of RNA from many different organisms, including bacteria and fungi as well as from other species. These RNAs may be associated with protein, lipid or other molecules protecting them from RNase activity in plasma. Some of these RNAs are detected in intracellular complexes and may be able to influence cellular activities under in vitro conditions. These findings raise the possibility that plasma RNAs of exogenous origin may serve as signaling molecules mediating for example the human-microbiome interaction and may affect and/or indicate the state of human health [less ▲]

Detailed reference viewed: 132 (7 UL)