References of "Zheng, G."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTransfer Learning and Meta Learning Based Fast Downlink Beamforming Adaptation
Yuan, Yi; Zheng, G.; Wong, K.-K. et al

in IEEE Transactions on Wireless Communications (2020)

This paper studies fast adaptive beamforming optimization for the signal-to-interference-plus-noise ratio balancing problem in a multiuser multiple-input single-output downlink system. Existing deep ... [more ▼]

This paper studies fast adaptive beamforming optimization for the signal-to-interference-plus-noise ratio balancing problem in a multiuser multiple-input single-output downlink system. Existing deep learning based approaches to predict beamforming rely on the assumption that the training and testing channels follow the same distribution which may not hold in practice. As a result, a trained model may lead to performance deterioration when the testing network environment changes. To deal with this task mismatch issue, we propose two offline adaptive algorithms based on deep transfer learning and meta-learning, which are able to achieve fast adaptation with the limited new labelled data when the testing wireless environment changes. Furthermore, we propose an online algorithm to enhance the adaptation capability of the offline meta algorithm in realistic non-stationary environments. Simulation results demonstrate that the proposed adaptive algorithms achieve much better performance than the direct deep learning algorithm without adaptation in new environments. The meta-learning algorithm outperforms the deep transfer learning algorithm and achieves near optimal performance. In addition, compared to the offline meta-learning algorithm, the proposed online meta-learning algorithm shows superior adaption performance in changing environments. [less ▲]

Detailed reference viewed: 28 (2 UL)
Full Text
Peer Reviewed
See detailFeasibility study of full-duplex relaying in satellite networks
Bhavani Shankar, M. R.; Zheng, G.; Maleki, Sina UL et al

in IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC (2015), 2015-August

With the successful implementation of full-duplex radio prototypes, traditional orthogonal half-duplex communications is deemed to be inefficient in certain terrestrial applications. While full-duplex ... [more ▼]

With the successful implementation of full-duplex radio prototypes, traditional orthogonal half-duplex communications is deemed to be inefficient in certain terrestrial applications. While full-duplex techniques are gaining interest in terrestrial communications, thanks to the trend of short-distance and low-power transmissions, their application to satellite communications has drawn little attention. Motivated by this, the paper explores the use of the full-duplex relaying operation on-board the satellite in a DVB-S2 compliant network. Self-interference, whose management is the key component of a full-duplex communication, is the focus of study in this paper. Modelling the effects of self-interference and power amplifier nonlinearities on the quality of the received signal in undertaken. Subsequently, closed-form expressions for the various interference components are derived. The numerical evaluations of derived expressions rely on realistic link budgets and indicate substantial gains in spectral efficiency when self-interference can be well calibrated and measured. This confirms that the satellite full-duplex communications could be a promising solution for the efficient use of satellite spectrum, at least from a technical point of view. © 2015 IEEE. [less ▲]

Detailed reference viewed: 154 (3 UL)