References of "Zentel, R"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTuning the defect configurations in nematic and smectic liquid crystalline shells.
Liang, H. L.; Noh, Junghyun UL; Zentel, R. et al

in Philosophical Transactions of the Royal Society of London. Series A : Mathematical and Physical Sciences (2013), 371(1988), 20120258

Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al ... [more ▼]

Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al. in 2007. By choosing particular combinations of stabilizers in the internal and external phases, different types of alignment, uniform or hybrid, can be ensured within the shell. Here, we investigate shells in the nematic and smectic phases under varying boundary conditions, focusing in particular on textural transformations during phase transitions, on the interaction between topological defects in the director field and inclusions in the liquid crystal (LC), and on the possibility to relocate defects within the shell by rotating the shell in the gravitational field. We demonstrate that inclusions in a shell can seed defects that cannot form in a pristine shell, adding a further means of tuning the defect configuration, and that shells in which the internal aqueous phase is not density matched with the LC will gently rearrange the internal structure upon a rotation that changes the influence of gravity. Because the defects can act as anchor points for added linker molecules, allowing self-assembly of adjacent shells, the various arrangements of defects developing in these shells and the possibility of tuning the result by modifying boundary conditions, LC phase, thickness and diameter of the shell or applying external forces make this new LC configuration very attractive. [less ▲]

Detailed reference viewed: 119 (1 UL)
Full Text
Peer Reviewed
See detailalpha-Pyrene polymer functionalized multiwalled carbon nanotubes: Solubility, stability and depletion phenomena
Meuer, S.; Braun, L.; Schilling, Tanja UL et al

in Polymer (2009), 50(1), 154-160

Detailed reference viewed: 11 (0 UL)
Full Text
Peer Reviewed
See detailDifferences between smectic homo- and copolysiloxanes as a consequence of microphase separation
Rössle, Martin; Braun, L.; Schollmeyer, D. et al

in Liquid Crystals (2005), 32(5), 533-538

This paper compares smectic phases formed from LC-homo- and LC-co-polysiloxanes. In the homopolysiloxane, each repeating unit of the polymer chain is substituted with a mesogen, whereas in the ... [more ▼]

This paper compares smectic phases formed from LC-homo- and LC-co-polysiloxanes. In the homopolysiloxane, each repeating unit of the polymer chain is substituted with a mesogen, whereas in the copolysiloxanes mesogenic repeating units are separated by dimethylsiloxane units. Despite a rather similiar phase sequence of the homo- and co-polysiloxanes—higher ordered smectic, smectic C* (SmC*), smectic A (SmA) and isotropic—the nature of their phases differs strongly. For the copolymers the phase transition SmC* to SmA is second order and of the ‘de Vries’ type with a very small thickness change of the smectic layers. Inside the SmA phase, however, the smectic thickness decreases strongly on approaching the isotropic phase. For the homopolymer the phase transition SmC* to SmA is first order with a significant thickness change, indicating that this phase is not of the ‘de Vries’ type. This difference in the nature of the smectic phases is probably a consequence of microphase separation in the copolymer, which facilitates a loss of the tilt angle correlation between different smectic layers. This has consequences for the mechanical properties of LC- elastomers formed from homo- and co-polymers. For the elastomers from homopolymers the smectic layer compression seems to be rather high, while it seems to be rather small for the copolymers. [less ▲]

Detailed reference viewed: 61 (0 UL)