References of "Zara, Federico"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRole of Common Genetic Variants for Drug-Resistance to Specific Anti-Seizure Medications
Wolking, Stefan; Campbell, Ciarán; Stapleton, Caragh et al

in Frontiers in Pharmacology (2021), 12

Objective: Resistance to anti-seizure medications (ASMs) presents a significant hurdle in the treatment of people with epilepsy. Genetic markers for resistance to individual ASMs could support clinicians ... [more ▼]

Objective: Resistance to anti-seizure medications (ASMs) presents a significant hurdle in the treatment of people with epilepsy. Genetic markers for resistance to individual ASMs could support clinicians to make better-informed choices for their patients. In this study, we aimed to elucidate whether the response to individual ASMs was associated with common genetic variation.Methods: A cohort of 3,649 individuals of European descent with epilepsy was deeply phenotyped and underwent single nucleotide polymorphism (SNP)-genotyping. We conducted genome-wide association analyses (GWASs) on responders to specific ASMs or groups of functionally related ASMs, using non-responders as controls. We performed a polygenic risk score (PRS) analyses based on risk variants for epilepsy and neuropsychiatric disorders and ASM resistance itself to delineate the polygenic burden of ASM-specific drug resistance.Results: We identified several potential regions of interest but did not detect genome-wide significant loci for ASM-specific response. We did not find polygenic risk for epilepsy, neuropsychiatric disorders, and drug-resistance associated with drug response to specific ASMs or mechanistically related groups of ASMs.Significance: This study could not ascertain the predictive value of common genetic variants for ASM responder status. The identified suggestive loci will need replication in future studies of a larger scale. [less ▲]

Detailed reference viewed: 49 (0 UL)
Full Text
See detailHeterozygous variants in KCNC2 cause a broad spectrum of epilepsy phenotypes associated with characteristic functional alterations 2021.05.21.21257099
Schwarz, Niklas; Seiffert, Simone; Pendziwiat, Manuela et al

E-print/Working paper (2021)

Background KCNC2 encodes a member of the shaw-related voltage-gated potassium channel family (KV3.2), which are important for sustained high-frequency firing and optimized energy efficiency of action ... [more ▼]

Background KCNC2 encodes a member of the shaw-related voltage-gated potassium channel family (KV3.2), which are important for sustained high-frequency firing and optimized energy efficiency of action potentials in the brain.Methods Individuals with KCNC2 variants detected by exome sequencing were selected for clinical, further genetic and functional analysis. The cases were referred through clinical and research collaborations in our study. Four de novo variants were examined electrophysiologically in Xenopus laevis oocytes.Results We identified novel KCNC2 variants in 27 patients with various forms of epilepsy. Functional analysis demonstrated gain-of-function in severe and loss-of-function in milder phenotypes as the underlying pathomechanisms with specific response to valproic acid.Conclusion These findings implicate KCNC2 as a novel causative gene for epilepsy emphasizing the critical role of KV3.2 in the regulation of brain excitability with an interesting genotype-phenotype correlation and a potential concept for precision medicine. [less ▲]

Detailed reference viewed: 30 (1 UL)
Full Text
Peer Reviewed
See detailAssessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy
Wolking, Stefan; Moreau, Claudia; McCormack, Mark et al

in Annals of Clinical and Translational Neurology (2021), n/a(n/a),

Abstract Objective Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals ... [more ▼]

Abstract Objective Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals with drug-resistant epilepsy remains unchanged. In this study, we aimed to investigate the role of rare genetic variants in ASM resistance. Methods We performed exome sequencing of 1,128 individuals with non-familial non-acquired focal epilepsy (NAFE) (762 non-responders, 366 responders) and were provided with 1,734 healthy controls. We undertook replication in a cohort of 350 individuals with NAFE (165 non-responders, 185 responders). We performed gene-based and gene-set-based kernel association tests to investigate potential enrichment of rare variants in relation to drug response status and to risk for NAFE. Results We found no gene or gene set that reached genome-wide significance. Yet, we identified several prospective candidate genes – among them DEPDC5, which showed a potential association with resistance to ASMs. We found some evidence for an enrichment of truncating variants in dominant familial NAFE genes in our cohort of non-familial NAFE and in association with drug-resistant NAFE. Interpretation Our study identifies potential candidate genes for ASM resistance. Our results corroborate the role of rare variants for non-familial NAFE and imply their involvement in drug-resistant epilepsy. Future large-scale genetic research studies are needed to substantiate these findings. [less ▲]

Detailed reference viewed: 61 (0 UL)
Full Text
Peer Reviewed
See detailSub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
Motelow, Joshua E.; Povysil, Gundula; Dhindsa, Ryan S. et al

in The American Journal of Human Genetics (2021)

Summary Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we ... [more ▼]

Summary Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy. [less ▲]

Detailed reference viewed: 26 (1 UL)
Full Text
See detailGenotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications
Johannesen, Katrine M.; Liu, Yuanyuan; Gjerulfsen, Cathrine E. et al

E-print/Working paper (2021)

We report detailed functional analyses and genotype-phenotype correlations in 433 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6. Five different ... [more ▼]

We report detailed functional analyses and genotype-phenotype correlations in 433 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6. Five different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n=17, normal cognition, treatable seizures), 2) intermediate epilepsy (n=36, mild ID, partially pharmacoresponsive), 3) developmental and epileptic encephalopathy (DEE, n=191, severe ID, majority pharmacoresistant), 4) generalized epilepsy (n=21, mild to moderate ID, frequently with absence seizures), and 5) affected individuals without epilepsy (n=25, mild to moderate ID). Groups 1-3 presented with early-onset (median: four months) focal or multifocal seizures and epileptic discharges, whereas the onset of seizures in group 4 was later (median: 39 months) with generalized epileptic discharges. The epilepsy was not classifiable in 143 individuals. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin insensitive human NaV1.6 channels and whole-cell patch clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 165 individuals. All 133 individuals carrying GOF variants had either focal (76, groups 1-3), or unclassifiable epilepsy (37), whereas 32 with LOF variants had either generalized (14), no (11) or unclassifiable (5) epilepsy; only two had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1-3.In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a therapeutic treatment option in early onset SCN8A-related focal epilepsy. [less ▲]

Detailed reference viewed: 70 (0 UL)
Full Text
Peer Reviewed
See detailClimate change and epilepsy: Insights from clinical and basic science studies
Gulcebi, Medine I.; Bartolini, Emanuele; Lee, Omay et al

in Epilepsy & Behavior (2021), 116

Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has ... [more ▼]

Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, is an insidious global health crisis needing at least as much attention. Many neurological diseases are complex chronic conditions influenced at many levels by changes in the environment. This review aimed to collate and evaluate reports from clinical and basic science about the relationship between climate change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, thermoregulation, biorhythm, gene, circadian rhythm, heat, and weather were used to search the published evidence. A number of climatic variables are associated with increased seizure frequency in people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress, and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne infections may trigger or exacerbate seizures, lead to deterioration of seizure control, and affect neurological, cerebrovascular, or cardiovascular comorbidities and risk of sudden unexpected death in epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and temperature-dependent channel function, to housing quality and global supply chains. According to the results of the limited number of experimental studies with animal models of seizures or epilepsy, different seizure types appear to have distinct susceptibility to seasonal influences. Increased body temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-related brain damage. Links between climate change and epilepsy are likely to be multifactorial, complex, and often indirect, which makes predictions difficult. We need more data on possible climate-driven altered risks for seizures, epilepsy, and epileptogenesis, to identify underlying mechanisms at systems, cellular, and molecular levels for better understanding of the impact of climate change on epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more to protect people with epilepsy from the effects of climate change. [less ▲]

Detailed reference viewed: 119 (0 UL)
Full Text
Peer Reviewed
See detailPharmacoresponse in genetic generalized epilepsy: a genome-wide association study
Wolking, Stefan; Schulz, Herbert; Nies, Anne T. et al

in Pharmacogenomics (2020), 0(0),

Aim: Pharmacoresistance is a major burden in epilepsy treatment. We aimed to identify genetic biomarkers in response to specific antiepileptic drugs (AEDs) in genetic generalized epilepsies (GGE ... [more ▼]

Aim: Pharmacoresistance is a major burden in epilepsy treatment. We aimed to identify genetic biomarkers in response to specific antiepileptic drugs (AEDs) in genetic generalized epilepsies (GGE). Materials  methods: We conducted a genome-wide association study (GWAS) of 3.3 million autosomal SNPs in 893 European subjects with GGE – responsive or nonresponsive to lamotrigine, levetiracetam and valproic acid. Results: Our GWAS of AED response revealed suggestive evidence for association at 29 genomic loci (p <10-5) but no significant association reflecting its limited power. The suggestive associations highlight candidate genes that are implicated in epileptogenesis and neurodevelopment. Conclusion: This first GWAS of AED response in GGE provides a comprehensive reference of SNP associations for hypothesis-driven candidate gene analyses in upcoming pharmacogenetic studies. [less ▲]

Detailed reference viewed: 73 (2 UL)
Full Text
Peer Reviewed
See detailTesting association of rare genetic variants with resistance to three common antiseizure medications
Wolking, Stefan; Moreau, Claudia; Nies, Anne T. et al

in Epilepsia (2020), 61(n/a), 657-666

Abstract Objective Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified ... [more ▼]

Abstract Objective Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). Methods A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set–based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. Results We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. Significance In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance. [less ▲]

Detailed reference viewed: 54 (0 UL)
Full Text
Peer Reviewed
See detailUltra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals
Feng, Yen-Chen Anne; Howrigan, Daniel P.; Abbott, Liam E. et al

in American Journal of Human Genetics (2019)

Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared ... [more ▼]

Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology. [less ▲]

Detailed reference viewed: 125 (6 UL)
Full Text
Peer Reviewed
See detailComparative effectiveness of antiepileptic drugs in juvenile myoclonic epilepsy
Silvennoinen, Katri; de Lange, Nikola Maria UL; Zagaglia, Sara et al

in Epilepsia Open (2019), 0(0),

Abstract Objective To study the effectiveness and tolerability of antiepileptic drugs (AEDs) commonly used in juvenile myoclonic epilepsy (JME). Methods People with JME were identified from a large ... [more ▼]

Abstract Objective To study the effectiveness and tolerability of antiepileptic drugs (AEDs) commonly used in juvenile myoclonic epilepsy (JME). Methods People with JME were identified from a large database of individuals with epilepsy, which includes detailed retrospective information on AED use. We assessed secular changes in AED use and calculated rates of response (12-month seizure freedom) and adverse drug reactions (ADRs) for the five most common AEDs. Retention was modeled with a Cox proportional hazards model. We compared valproate use between males and females. Results We included 305 people with 688 AED trials of valproate, lamotrigine, levetiracetam, carbamazepine, and topiramate. Valproate and carbamazepine were most often prescribed as the first AED. The response rate to valproate was highest among the five AEDs (42.7\%), and significantly higher than response rates for lamotrigine, carbamazepine, and topiramate; the difference to the response rate to levetiracetam (37.1\%) was not significant. The rates of ADRs were highest for topiramate (45.5\%) and valproate (37.5\%). Commonest ADRs included weight change, lethargy, and tremor. In the Cox proportional hazards model, later start year (1.10 [1.08-1.13], P < 0.001) and female sex (1.41 [1.07-1.85], P = 0.02) were associated with shorter trial duration. Valproate was associated with the longest treatment duration; trials with carbamazepine and topiramate were significantly shorter (HR [CI]: 3.29 [2.15-5.02], P < 0.001 and 1.93 [1.31-2.86], P < 0.001). The relative frequency of valproate trials shows a decreasing trend since 2003 while there is an increasing trend for levetiracetam. Fewer females than males received valproate (76.2 vs 92.6\%, P = 0.001). Significance In people with JME, valproate is an effective AED; levetiracetam emerged as an alternative. Valproate is now contraindicated in women of childbearing potential without special precautions. With appropriate selection and safeguards in place, valproate should remain available as a therapy, including as an alternative for women of childbearing potential whose seizures are resistant to other treatments. [less ▲]

Detailed reference viewed: 146 (11 UL)
Full Text
Peer Reviewed
See detailGenomic and clinical predictors of lacosamide response in refractory epilepsies
Heavin, Sinéad B.; McCormack, Mark; Wolking, Stefan et al

in Epilepsia Open (2019), 0(0),

Abstract Objective Clinical and genetic predictors of response to antiepileptic drugs (AEDs) are largely unknown. We examined predictors of lacosamide response in a real-world clinical setting. Methods We ... [more ▼]

Abstract Objective Clinical and genetic predictors of response to antiepileptic drugs (AEDs) are largely unknown. We examined predictors of lacosamide response in a real-world clinical setting. Methods We tested the association of clinical predictors with treatment response using regression modeling in a cohort of people with refractory epilepsy. Genetic assessment for lacosamide response was conducted via genome-wide association studies and exome studies, comprising 281 candidate genes. Results Most patients (479/483) were treated with LCM in addition to other AEDs. Our results corroborate previous findings that patients with refractory genetic generalized epilepsy (GGE) may respond to treatment with LCM. No clear clinical predictors were identified. We then compared 73 lacosamide responders, defined as those experiencing greater than 75% seizure reduction or seizure freedom, to 495 nonresponders (<25% seizure reduction). No variants reached the genome-wide significance threshold in our case-control analysis. Significance No genetic predictor of lacosamide response was identified. Patients with refractory GGE might benefit from treatment with lacosamide. [less ▲]

Detailed reference viewed: 111 (0 UL)
Full Text
Peer Reviewed
See detailRare gene deletions in genetic generalized and Rolandic epilepsies
Jabbari, Kamel; Bobbili, Dheeraj Reddy UL; Lal, Dennis et al

in PLoS ONE (2018)

Genetic Generalized Epilepsy (GGE) and benign epilepsy with centro-temporal spikes or Rolandic Epilepsy (RE) are common forms of genetic epilepsies. Rare copy number variants have been recognized as ... [more ▼]

Genetic Generalized Epilepsy (GGE) and benign epilepsy with centro-temporal spikes or Rolandic Epilepsy (RE) are common forms of genetic epilepsies. Rare copy number variants have been recognized as important risk factors in brain disorders. We performed a systematic survey of rare deletions affecting protein-coding genes derived from exome data of patients with common forms of genetic epilepsies. We analysed exomes from 390 European patients (196 GGE and 194 RE) and 572 population controls to identify low-frequency genic deletions. We found that 75 (32 GGE and 43 RE) patients out of 390, i.e. ~19%, carried rare genic deletions. In particular, large deletions (>400 kb) represent a higher burden in both GGE and RE syndromes as compared to controls. The detected low-frequency deletions (1) share genes with brain-expressed exons that are under negative selection, (2) overlap with known autism and epilepsy-associated candidate genes, (3) are enriched for CNV intolerant genes recorded by the Exome Aggregation Consortium (ExAC) and (4) coincide with likely disruptive de novo mutations from the NPdenovo database. Employing several knowledge databases, we discuss the most prominent epilepsy candidate genes and their protein-protein networks for GGE and RE. [less ▲]

Detailed reference viewed: 134 (14 UL)
Full Text
Peer Reviewed
See detailRare coding variants in genes encoding GABAA receptors in genetic generalised epilepsies: an exome-based case-control study
May, Patrick UL; Girard, Simon; Harrer, Merle et al

in Lancet Neurology (2018), 17(8), 699-708

Background Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We ... [more ▼]

Background Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. Methods For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. Findings Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41–4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05–2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02–2·08]; pNonsyn=0·013, adjusted pNonsyn=0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. Interpretation Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. [less ▲]

Detailed reference viewed: 108 (18 UL)
Full Text
Peer Reviewed
See detailGenetic variation in CFH predicts phenytoin-induced maculopapular exanthema in European-descent patients.
McCormack, Mark; Gui, Hongsheng; Ingason, Andres et al

in Neurology (2017)

OBJECTIVE: To characterize, among European and Han Chinese populations, the genetic predictors of maculopapular exanthema (MPE), a cutaneous adverse drug reaction common to antiepileptic drugs. METHODS ... [more ▼]

OBJECTIVE: To characterize, among European and Han Chinese populations, the genetic predictors of maculopapular exanthema (MPE), a cutaneous adverse drug reaction common to antiepileptic drugs. METHODS: We conducted a case-control genome-wide association study of autosomal genotypes, including Class I and II human leukocyte antigen (HLA) alleles, in 323 cases and 1,321 drug-tolerant controls from epilepsy cohorts of northern European and Han Chinese descent. Results from each cohort were meta-analyzed. RESULTS: We report an association between a rare variant in the complement factor H-related 4 (CFHR4) gene and phenytoin-induced MPE in Europeans (p = 4.5 x 10(-11); odds ratio [95% confidence interval] 7 [3.2-16]). This variant is in complete linkage disequilibrium with a missense variant (N1050Y) in the complement factor H (CFH) gene. In addition, our results reinforce the association between HLA-A*31:01 and carbamazepine hypersensitivity. We did not identify significant genetic associations with MPE among Han Chinese patients. CONCLUSIONS: The identification of genetic predictors of MPE in CFHR4 and CFH, members of the complement factor H-related protein family, suggest a new link between regulation of the complement system alternative pathway and phenytoin-induced hypersensitivity in European-ancestral patients. [less ▲]

Detailed reference viewed: 173 (2 UL)
Full Text
Peer Reviewed
See detailRare GABRA3 variants are associated with epileptic seizures, encephalopathy and dysmorphic features
Niturad, Elena Christina; Lev, Dorit; Kalscheuer, Vera M et al

in Brain : A Journal of Neurology (2017), 140(11), 2879-2894

Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased ... [more ▼]

Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the α3-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the α3-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern. [less ▲]

Detailed reference viewed: 102 (9 UL)
Full Text
Peer Reviewed
See detailAlterations in the α2δ ligand, thrombospondin-1, in a rat model of spontaneous absence epilepsy and in patients with idiopathic/genetic generalized epilepsies
Santolini, Ines; Celli, Roberta; Cannella, Milena et al

in Epilepsia (2017)

OBJECTIVES: Thrombospondins, which are known to interact with the α2 δ subunit of voltage-sensitive calcium channels to stimulate the formation of excitatory synapses, have recently been implicated in the ... [more ▼]

OBJECTIVES: Thrombospondins, which are known to interact with the α2 δ subunit of voltage-sensitive calcium channels to stimulate the formation of excitatory synapses, have recently been implicated in the process of epileptogenesis. No studies have been so far performed on thrombospondins in models of absence epilepsy. We examined whether expression of the gene encoding for thrombospondin-1 was altered in the brain of WAG/Rij rats, which model absence epilepsy in humans. In addition, we examined the frequency of genetic variants of THBS1 in a large cohort of children affected by idiopathic/genetic generalized epilepsies (IGE/GGEs). METHODS: We measured the transcripts of thrombospondin-1 and α2 δ subunit, and protein levels of α2 δ, Rab3A, and the vesicular glutamate transporter, VGLUT1, in the somatosensory cortex and ventrobasal thalamus of presymptomatic and symptomatic WAG/Rij rats and in two control strains by real-time polymerase chain reaction (PCR) and immunoblotting. We examined the genetic variants of THBS1 and CACNA2D1 in two independent cohorts of patients affected by IGE/GGE recruited through the Genetic Commission of the Italian League Against Epilepsy (LICE) and the EuroEPINOMICS-CoGIE Consortium. RESULTS: Thrombospondin-1 messenger RNA (mRNA) levels were largely reduced in the ventrobasal thalamus of both presymptomatic and symptomatic WAG/Rij rats, whereas levels in the somatosensory cortex were unchanged. VGLUT1 protein levels were also reduced in the ventrobasal thalamus of WAG/Rij rats. Genetic variants of THBS1 were significantly more frequent in patients affected by IGE/GGE than in nonepileptic controls, whereas the frequency of CACNA2D1 was unchanged. SIGNIFICANCE: These findings suggest that thrombospondin-1 may have a role in the pathogenesis of IGE/GGEs. [less ▲]

Detailed reference viewed: 138 (2 UL)
Full Text
Peer Reviewed
See detailComparative effectiveness of antiepileptic drugs in patients with mesial temporal lobe epilepsy with hippocampal sclerosis
Androsova, Ganna UL; Krause, Roland UL; Borghei, Mojgansadat et al

in Epilepsia (2017)

Objective: Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a common epilepsy syndrome that is often poorly controlled by antiepileptic drug (AED) treatment. Comparative AED ... [more ▼]

Objective: Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a common epilepsy syndrome that is often poorly controlled by antiepileptic drug (AED) treatment. Comparative AED effectiveness studies in this condition are lacking. Wereport retention, efficacy, and tolerability in a cohort of patients with MTLE-HS. Methods: Clinical data were collected from a European database of patients with epilepsy. We estimated retention, 12-month seizure freedom, and adverse drug reaction (ADR) rates for the 10 most commonly used AEDs in patients with MTLE-HS. Results: Seven hundred sixty-seven patients with a total of 3,249 AED trials were included. The highest 12-month retention rates were observed with carbamazepine (85.9%), valproate (85%), and clobazam (79%). Twelve-month seizure freedom rates varied from 1.2% for gabapentin and vigabatrin to 11% for carbamazepine. Response rates were highest for AEDs that were prescribed as initial treatment and lowest for AEDs that were used in a third or higher instance. ADRs were reported in 47.6% of patients, with the highest rates observed with oxcarbazepine (35.7%), topiramate (30.9%), and pregabalin (27.4%), and the lowest rates with clobazam (6.5%), gabapentin (8.9%), and lamotrigine (16.6%). The most commonly reported ADRs were lethargy and drowsiness, dizziness, vertigo and ataxia, and blurred vision and diplopia. Significance: Our results did not demonstrate any clear advantage of newer versus older AEDs. Our results provide useful insights into AED retention, efficacy, and ADR rates in patients with MTLE-HS. [less ▲]

Detailed reference viewed: 157 (12 UL)
Full Text
Peer Reviewed
See detailApplication of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data
Allen, Andrew S.; Berkovic, Samuel F.; Bridgers, Joshua et al

in European Journal of Human Genetics (2017)

The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly ... [more ▼]

The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient–parent trios that were generally prescreened for rare metabolic disorders. In the current sample, our rare variant transmission disequilibrium test did not identify individual genes with significantly distorted transmission over expectation after correcting for the multiple tests. While the rare variant transmission disequilibrium test did not find evidence of a role for individual autosomal recessive genes, our current sample is insufficiently powered to assess the overall role of autosomal recessive genotypes in an outbred epileptic encephalopathy population. [less ▲]

Detailed reference viewed: 183 (10 UL)
Full Text
Peer Reviewed
See detailDe Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies.
Appenzeller, Silke; Balling, Rudi UL; Barisic, Nina et al

in American Journal of Human Genetics (2017), 100(1), 179-

In the list of consortium members for the Epilepsy Phenome/Genome Project, member Dina Amrom’s name was misspelled as Amron. The authors regret the error.

Detailed reference viewed: 155 (3 UL)
Full Text
Peer Reviewed
See detailCHD2 myoclonic encephalopathy is frequently associated with self-induced seizures
Thomas, Rhys H.; Zhang, Lin Mei; Carvill, Gemma L. et al

in Neurology (2015), 84(9), 951-958

Objective: To delineate the phenotype of early childhood epileptic encephalopathy due to de novo mutations of CHD2, which encodes the chromodomain helicase DNA binding protein 2. Methods: We analyzed the ... [more ▼]

Objective: To delineate the phenotype of early childhood epileptic encephalopathy due to de novo mutations of CHD2, which encodes the chromodomain helicase DNA binding protein 2. Methods: We analyzed the medical history, MRI, and video-EEG recordings of 9 individuals with de novo CHD2 mutations and one with a de novo 15q26 deletion encompassing CHD2. Results: Seizures began at a mean of 26 months (12–42) with myoclonic seizures in all 10 cases. Seven exhibited exquisite clinical photosensitivity; 6 self-induced with the television. Absence seizures occurred in 9 patients including typical (4), atypical (2), and absence seizures with eyelid myoclonias (4). Generalized tonic-clonic seizures occurred in 9 of 10 cases with a mean onset of 5.8 years. Convulsive and nonconvulsive status epilepticus were later features (6/10, mean onset 9 years). Tonic (40%) and atonic (30%) seizures also occurred. In 3 cases, an unusual seizure type, the atonic-myoclonic-absence was captured on video. A phenotypic spectrum was identified with 7 cases having moderate to severe intellectual disability and refractory seizures including tonic attacks. Their mean age at onset was 23 months. Three cases had a later age at onset (34 months) with relative preservation of intellect and an initial response to antiepileptic medication. Conclusion: The phenotypic spectrum of CHD2 encephalopathy has distinctive features of myoclonic epilepsy, marked clinical photosensitivity, atonic-myoclonic-absence, and intellectual disability ranging from mild to severe. Recognition of this genetic entity will permit earlier diagnosis and enable the development of targeted therapies. [less ▲]

Detailed reference viewed: 157 (5 UL)