References of "Yuan, Yaxiong 50034266"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEnergy Minimization in UAV-Aided Networks: Actor-Critic Learning for Constrained Scheduling Optimization
Yuan, Yaxiong UL; Lei, Lei UL; Vu, Thang Xuan UL et al

in IEEE Transactions on Vehicular Technology (2021)

In unmanned aerial vehicle (UAV) applications, the UAV's limited energy supply and storage have triggered the development of intelligent energy-conserving scheduling solutions. In this paper, we ... [more ▼]

In unmanned aerial vehicle (UAV) applications, the UAV's limited energy supply and storage have triggered the development of intelligent energy-conserving scheduling solutions. In this paper, we investigate energy minimization for UAV-aided communication networks by jointly optimizing data-transmission scheduling and UAV hovering time. The formulated problem is combinatorial and non-convex with bilinear constraints. To tackle the problem, firstly, we provide an optimal relax-and-approximate solution and develop a near-optimal algorithm. Both the proposed solutions are served as offline performance benchmarks but might not be suitable for online operation. To this end, we develop a solution from a deep reinforcement learning (DRL) aspect. The conventional RL/DRL, e.g., deep Q-learning, however, is limited in dealing with two main issues in constrained combinatorial optimization, i.e., exponentially increasing action space and infeasible actions. The novelty of solution development lies in handling these two issues. To address the former, we propose an actor-critic-based deep stochastic online scheduling (AC-DSOS) algorithm and develop a set of approaches to confine the action space. For the latter, we design a tailored reward function to guarantee the solution feasibility. Numerical results show that, by consuming equal magnitude of time, AC-DSOS is able to provide feasible solutions and saves 29.94% energy compared with a conventional deep actor-critic method. Compared to the developed near-optimal algorithm, AC-DSOS consumes around 10% higher energy but reduces the computational time from minute-level to millisecond-level. [less ▲]

Detailed reference viewed: 47 (12 UL)
Full Text
Peer Reviewed
See detailActor‑critic learning‑based energy optimization for UAV access and backhaul networks
Yuan, Yaxiong UL; Lei, Lei UL; Vu, Thang Xuan UL et al

in EURASIP Journal on Wireless Communications and Networking (2021)

In unmanned aerial vehicle (UAV)-assisted networks, UAV acts as an aerial base station which acquires the requested data via backhaul link and then serves ground users (GUs) through an access network. In ... [more ▼]

In unmanned aerial vehicle (UAV)-assisted networks, UAV acts as an aerial base station which acquires the requested data via backhaul link and then serves ground users (GUs) through an access network. In this paper, we investigate an energy minimization problem with a limited power supply for both backhaul and access links. The difficul- ties for solving such a non-convex and combinatorial problem lie at the high compu- tational complexity/time. In solution development, we consider the approaches from both actor-critic deep reinforcement learning (AC-DRL) and optimization perspectives. First, two offline non-learning algorithms, i.e., an optimal and a heuristic algorithms, based on piecewise linear approximation and relaxation are developed as benchmarks. Second, toward real-time decision-making, we improve the conventional AC-DRL and propose two learning schemes: AC-based user group scheduling and backhaul power allocation (ACGP), and joint AC-based user group scheduling and optimization-based backhaul power allocation (ACGOP). Numerical results show that the computation time of both ACGP and ACGOP is reduced tenfold to hundredfold compared to the offline approaches, and ACGOP is better than ACGP in energy savings. The results also verify the superiority of proposed learning solutions in terms of guaranteeing the feasibility and minimizing the system energy compared to the conventional AC-DRL. [less ▲]

Detailed reference viewed: 55 (9 UL)
Full Text
Peer Reviewed
See detailActor-Critic Deep Reinforcement Learning for Energy Minimization in UAV-Aided Networks
Yuan, Yaxiong UL; Lei, Lei UL; Vu, Thang Xuan UL et al

in 2020 European Conference on Networks and Communications (EuCNC) (2020, September 21)

In this paper, we investigate a user-timeslot scheduling problem for downlink unmanned aerial vehicle (UAV)-aided networks, where the UAV serves as an aerial base station. We formulate an optimization ... [more ▼]

In this paper, we investigate a user-timeslot scheduling problem for downlink unmanned aerial vehicle (UAV)-aided networks, where the UAV serves as an aerial base station. We formulate an optimization problem by jointly determining user scheduling and hovering time to minimize UAV’s transmission and hovering energy. An offline algorithm is proposed to solve the problem based on the branch and bound method and the golden section search. However, executing the offline algorithm suffers from the exponential growth of computational time. Therefore, we apply a deep reinforcement learning (DRL) method to design an online algorithm with less computational time. To this end, we first reformulate the original user scheduling problem to a Markov decision process (MDP). Then, an actor-critic-based RL algorithm is developed to determine the scheduling policy under the guidance of two deep neural networks. Numerical results show the proposed online algorithm obtains a good tradeoff between performance gain and computational time. [less ▲]

Detailed reference viewed: 61 (5 UL)
Full Text
Peer Reviewed
See detailBeam Illumination Pattern Design in Satellite Networks: Learning and Optimization for Efficient Beam Hopping
Lei, Lei UL; Lagunas, Eva UL; Yuan, Yaxiong UL et al

in IEEE Access (2020)

Beam hopping (BH) is considered to provide a high level of flexibility to manage irregular and time-varying traffic requests in future multi-beam satellite systems. In BH optimization, adopting ... [more ▼]

Beam hopping (BH) is considered to provide a high level of flexibility to manage irregular and time-varying traffic requests in future multi-beam satellite systems. In BH optimization, adopting conventional iterative heuristics may have their own limitations in providing timely solutions, and directly using data-driven technique to approximate optimization variables may lead to constraint violation and degraded performance. In this paper, we explore a combined learning-and-optimization (L&O) approach to provide an efficient, feasible, and near-optimal solution. The investigations are from the following aspects: 1) Integration ofBH optimization and learning techniques; 2) Features to be learned in BH design; 3) How to address the feasibility issue incurred by machine learning. We provide numerical results and analysis to show that the learning component in L&O significantly accelerates the procedure of identifying promising BH patterns, resulting in reduced computing time from seconds/minutes to milliseconds level. The identified learning feature enables high accuracy in predictions. In addition, the optimization component in L&O guarantees the solution’s feasibility and improves the overall performance with around 5% gap to the optimum. [less ▲]

Detailed reference viewed: 117 (33 UL)
Full Text
Peer Reviewed
See detailProxSGD: Training Structured Neural Networks under Regularization and Constraints
Yang, Yang; Yuan, Yaxiong UL; Chatzimichailidis, Avraam et al

in International Conference on Learning Representations (ICLR) 2020 (2020)

Detailed reference viewed: 39 (2 UL)