References of "Wu, Yan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGuided Inductive Logic Programming: Cleaning Knowledge Bases with Iterative User Feedback
Wu, Yan; Chen, Jinchuan; Haxhidauti, Plarent et al

in Guided Inductive Logic Programming: Cleaning Knowledge Bases with Iterative User Feedback (2020, March 12)

Domain-oriented knowledge bases (KBs) such as DBpedia and YAGO are largely constructed by applying a set of predefined extraction rules to the semi-structured contents of Wikipedia articles. Although both ... [more ▼]

Domain-oriented knowledge bases (KBs) such as DBpedia and YAGO are largely constructed by applying a set of predefined extraction rules to the semi-structured contents of Wikipedia articles. Although both of these large-scale KBs achieve very high average precision values (above 95% for YAGO3), subtle mistakes in a few of the underlying extraction rules may still impose a substantial amount of systematic extraction mistakes for specific relations. For example, by applying the same regular expressions to extract person names of both Asian and Western nationality, YAGO erroneously swaps most of the family and given names of Asian person entities. For traditional rule-learning approaches based on Inductive Logic Programming (ILP), it is very difficult to detect these systematic extraction mistakes, since they usually occur only in a relatively small subdomain of the relations’ arguments. In this paper, we thus propose a guided form of ILP, coined “GILP”, that iteratively asks for small amounts of user feedback over a given KB to learn a set of data-cleaning rules that (1) best match the feedback and (2) also generalize to a larger portion of facts in the KB. We propose both algorithms and respective metrics to automatically assess the quality of the learned rules with respect to the user feedback. [less ▲]

Detailed reference viewed: 33 (2 UL)
Full Text
Peer Reviewed
See detailDynamical analysis of cellular networks based on the Green's function matrix
Perumal, Thanneer Malai UL; Wu, Yan; Gunawan, Rudiyanto

in Journal of Theoretical Biology (2009), 261(2), 248-59

The complexity of cellular networks often limits human intuition in understanding functional regulations in a cell from static network diagrams. To this end, mathematical models of ordinary differential ... [more ▼]

The complexity of cellular networks often limits human intuition in understanding functional regulations in a cell from static network diagrams. To this end, mathematical models of ordinary differential equations (ODEs) have commonly been used to simulate dynamical behavior of cellular networks, to which a quantitative model analysis can be applied in order to gain biological insights. In this paper, we introduce a dynamical analysis based on the use of Green's function matrix (GFM) as sensitivity coefficients with respect to initial concentrations. In contrast to the classical (parametric) sensitivity analysis, the GFM analysis gives a dynamical, molecule-by-molecule insight on how system behavior is accomplished and complementarily how (impulse) signal propagates through the network. The knowledge gained will have application from model reduction and validation to drug discovery research in identifying potential drug targets, studying drug efficacy and specificity, and optimizing drug dosing and timing. The efficacy of the method is demonstrated through applications to common network motifs and a Fas-induced programmed cell death model in Jurkat T cell line. [less ▲]

Detailed reference viewed: 83 (3 UL)