References of "Wu, X"
     in
Bookmark and Share    
See detailAmber 14
Case, D. A.; Babin, V.; Berryman, Josh UL et al

Book published by University of California (2014)

Detailed reference viewed: 2123 (8 UL)
Full Text
Peer Reviewed
See detailGeocenter motion and its geodetic and geophysical implications
Wu, X.; Ray, J.; van Dam, Tonie UL

in Journal of Geodynamics (2012), 58

The horizontal transport of water in Earth’s surface layer, including sea level change, deglaciation, and surface runoff, is a manifestation of many geophysical processes. These processes entail ocean and ... [more ▼]

The horizontal transport of water in Earth’s surface layer, including sea level change, deglaciation, and surface runoff, is a manifestation of many geophysical processes. These processes entail ocean and atmosphere circulation and tidal attraction, global climate change, and the hydrological cycle, all having a broad range of spatiotemporal scales. The largest atmospheric mass variations occur mostly at synoptic wavelengths and at seasonal time scales. The longest wavelength component of surface mass transport, the spherical harmonic degree-1, involves the exchange of mass between the northern and southern hemispheres. These degree-1 mass loads deform the solid Earth, including its surface, and induce geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure (CF) of the solid Earth surface. Because geocenter motion also depends on the mechanical properties of the solid Earth, monitoring geocenter motion thus provides an additional opportunity to probe deep into Earth’s interior. Most modern geodetic measurement systems rely on tracking data between ground stations and satellites that orbit around CM. Consequently, geocenter motion is intimately related to the realization of the International Terrestrial Reference Frame (ITRF) origin, and, in various ways, affects many of our measurement objectives for global change monitoring. In the last 15 years, there have been vast improvements in geophysical fluid modeling and in the global coverage, densification, and accuracy of geodetic observations. As a result of these developments, tremendous progress has been made in the study of geocenter motion over the same period. This paper reviews both the theoretical and measurement aspects of geocenter motion and its implications. [less ▲]

Detailed reference viewed: 138 (3 UL)
Full Text
Peer Reviewed
See detailEffect of the satellite laser ranging network distribution on geocenter motion estimation
Collilieux, X.; Altamimi, Z.; Ray, J. et al

in Journal of Geophysical Research (2009), 114

SLR network translations estimated between a quasi-instantaneous station position set, theoretically expressed with respect to the center of mass of the Earth (CM), and a secular reference frame are the ... [more ▼]

SLR network translations estimated between a quasi-instantaneous station position set, theoretically expressed with respect to the center of mass of the Earth (CM), and a secular reference frame are the signature of the motion of the CM with respect to the Earth crust. Geocenter motion is defined here to be the motion of the CM with respect to the geometric center of the solid Earth surface (CF). SLR translational variations cannot be rigorously interpreted as identical to geocenter motion due to the sparse and nonuniform distribution of the SLR network. Their difference is called the network effect, which should be dominated at subdecadal timescales by loading signals.We have computed translation time series of the SLR network using two independent geophysically based loading models. One is a displacement model estimated from surface fluid data (Green’s function approach), called forward model, and the other is a displacement model estimated from GPS and ocean bottom pressure (OBP) data, called inverse model. The translation models have been subtracted from their respective geocenter motion models computed from degree-1 mass load coefficients in order to evaluate their network effect biases. Scatter due to the SLR network effect is at the level of 1.5 mm RMS. It could slightly shift the phase of the annual SLR geocenter motion estimate by less than 1 month and could affect X and Z annual geocenter motion amplitudes at the 1-mm level, which is about one third of the expected signal. Two distinct methods are suggested to account for network effect when comparing SLR translations to geocenter motion models. The first is to add the network effect term predicted by a displacement model to the geocenter motion loading model. The second relies on an adequate combination of SLR and GPS products to estimate SLR translation that could be better compared with geocenter motion. [less ▲]

Detailed reference viewed: 94 (0 UL)